Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (6): 3029-3048.DOI: 10.16085/j.issn.1000-6613.2022-1434
• Materials science and technology • Previous Articles Next Articles
ZHU Yajing1(), XU Yan1(), JIAN Meipeng1,2,3(), LI Haiyan1,2,3(), WANG Chongchen1,4
Received:
2022-08-01
Revised:
2022-09-20
Online:
2023-06-29
Published:
2023-06-25
Contact:
JIAN Meipeng, LI Haiyan
朱雅静1(), 徐岩1(), 简美鹏1,2,3(), 李海燕1,2,3(), 王崇臣1,4
通讯作者:
简美鹏,李海燕
作者简介:
朱雅静(1998—),女,硕士研究生,研究方向为MOFs的合成与海水提铀应用。E-mail:zhuyajing0608@163.com基金资助:
CLC Number:
ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048.
朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1434
1 | PIECHOWICZ M, ABNEY C, ZHOU X, et al. Design, synthesis, and characterization of a bifunctional chelator with ultrahigh capacity for uranium uptake from seawater simulant[J]. Industrial & Engineering Chemistry Research, 2016, 55(15):4170-4178. |
2 | YIN Xiaojie, BAI Jing, FAN Fangli, et al. Amidoximed silica for uranium(Ⅵ) sorption from aqueous solution[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(3): 2135-2142. |
3 | KIM Jungseung, TSOURIS Costas, MAYES Richard T, et al. Recovery of uranium from seawater: A review of current status and future research needs[J]. Separation Science and Technology, 2013, 48(3): 367-387. |
4 | LI Hui, ZHAI Fuwan, GUI Daxiang, et al. Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks[J]. Applied Catalysis B: Environmental, 2019, 254: 47-54. |
5 | MANOS Manolis J, KANATZIDIS Mercouri G. Layered metal sulfides capture uranium from seawater[J]. Journal of the American Chemical Society, 2012, 134(39): 16441-16446. |
6 | KANNO Masayoshi. Present status of study on extraction of uranium from sea water[J]. Journal of Nuclear Science and Technology, 1984, 21(1): 1-9. |
7 | 熊洁, 文君, 胡胜, 等. 中国海水提铀研究进展[J]. 核化学与放射化学, 2015, 37(5): 257-265. |
XIONG Jie, WEN Jun, HU Sheng, et al. Progress in extracting uranium from seawater of China[J]. Journal of Nuclear and Radiochemistry, 2015, 37(5): 257-265. | |
8 | 陈戏三, 何琳, 戴波. 海水提铀的先进材料与试验装置的研究进展[J]. 科技创新导报, 2017, 14(8): 83-84. |
CHEN Xisan, HE Lin, DAI Bo. Research progress of extraction uranium by using advanced materials and adsorption experimental systems from sea-water[J]. Science and Technology Innovation Herald, 2017, 14(8): 83-84. | |
9 | ABNEY Carter W, MAYES Richard T, SAITO Tomonori, et al. Materials for the recovery of uranium from seawater[J]. Chemical Reviews, 2017, 117(23): 13935-14013. |
10 | TAMADA Masao. Current status of technology for collection of uranium from seawater[C]//International Seminar on Nuclear War and Planetary Emergencies — 42nd Session. Erice, Italy. World Scientific, 2010: 243-252. |
11 | GUO Han, MEI Peng, XIAO Jingting, et al. Carbon materials for extraction of uranium from seawater[J]. Chemosphere, 2021, 278: 130411. |
12 | HORIKE Satoshi, UMEYAMA Daiki, KITAGAWA Susumu. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks[J]. Accounts of Chemical Research, 2013, 46(11): 2376-2384. |
13 | ZHOU Hongcai, LONG Jeffrey R, YAGHI Omar M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674. |
14 | 彭莹, 张晓文, 李密, 等. 金属有机框架材料吸附分离水中铀的应用[J]. 化工进展, 2019, 38(7): 3227-3242. |
PENG Ying, ZHANG Xiaowen, LI Mi, et al. Application of metal-organic frameworks in adsorption and separation of uranium from water[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3227-3242. | |
15 | YAGHI O M, LI H L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 1995, 117(41): 10401-10402. |
16 | CHEN Mengwei, LIU Tao, ZHANG Xiaobin, et al. Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel[J]. Advanced Functional Materials, 2021, 31(22): 2100106. |
17 | DEMESSENCE Aude, D’ALESSANDRO Deanna M, Maw Lin FOO, et al. Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine[J]. Journal of the American Chemical Society, 2009, 131(25): 8784-8786. |
18 | GORDILLO Monica A, BENAVIDES Paola A, PANDA Dillip K, et al. The advent of electrically conducting double-helical metal-organic frameworks featuring butterfly-shaped electron-rich π-extended tetrathiafulvalene ligands[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12955-12961. |
19 | HOSKINS Bernard F, ROBSON Richard. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. Journal of the American Chemical Society, 1989, 111(15): 5962-5964. |
20 | JIANG Lu, ZHANG Wei, LUO Congguang, et al. Adsorption toward trivalent rare earth element from aqueous solution by zeolitic imidazolate frameworks[J]. Industrial & Engineering Chemistry Research, 2016, 55(22): 6365-6372. |
21 | LI Linnan, MA Wen, SHEN Sensen, et al. A combined experimental and theoretical study on the extraction of uranium by amino-derived metal-organic frameworks through post-synthetic strategy[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 31032-31041. |
22 | XUE Wenjuan, ZHANG Zhengqing, HUANG Hongliang, et al. Theoretical insights into the initial hydrolytic breakdown of HKUST-1[J]. The Journal of Physical Chemistry C, 2020, 124(3): 1991-2001. |
23 | Ka Kit YEE, REIMER Nele, LIU Jie, et al. Effective mercury sorption by thiol-laced metal-organic frameworks: In strong acid and the vapor phase[J]. Journal of the American Chemical Society, 2013, 135(21): 7795-7798. |
24 | LIU Xinlei, WANG Xuerui, KAPTEIJN Freek. Water and metal-organic frameworks: From interaction toward utilization[J]. Chemical Reviews, 2020, 120(16): 8303-8377. |
25 | BAI Yan, DOU Yibo, XIE Linhua, et al. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications[J]. Chemical Society Reviews, 2016, 45(8): 2327-2367. |
26 | BURTCH Nicholas C, JASUJA Himanshu, WALTON Krista S. Water stability and adsorption in metal-organic frameworks[J]. Chemical Reviews, 2014, 114(20): 10575-10612. |
27 | QIAN Xukun, YADIAN Boluo, WU Renbing, et al. Structure stability of metal-organic framework MIL-53(Al) in aqueous solutions[J]. International Journal of Hydrogen Energy, 2013, 38(36): 16710-16715. |
28 | HILAL S H, KARICKHOFF S, CARREIRA L A. A rigorous test for SPARC’s chemical reactivity models: Estimation of more than 4300 ionization pKas[J]. Quantitative Structure-Activity Relationships, 1995, 14(4): 348-355. |
29 | ZHANG Jinwei, LI Ping, ZHANG Xinning, et al. Water adsorption properties and applications of stable metal-organic frameworks[J]. Acta Chimica Sinica, 2020, 78(7): 597-612. |
30 | KANG In Joong, KHAN Nazmul Abedin, HAQUE Enamul, et al. Chemical and thermal stability of isotypic metal-organic frameworks: Effect of metal ions[J]. Chemistry-A European Journal, 2011, 17(23): 6437-6442. |
31 | 祖梅, 许海涛, 谢炜, 等. 金属有机框架材料的水稳定性及吸水应用进展[J]. 化工进展, 2022, 41(8): 4254-4267. |
ZU Mei, XU Haitao, XIE Wei, et al. Progress in water stable and water absorption applications of metal-organic frameworks[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4254-4267. | |
32 | BIRSA ČELIČ Tadeja, MAZAJ Matjaž, GUILLOU Nathalie, et al. Study of hydrothermal stability and water sorption characteristics of 3-dimensional Zn-based trimesate[J]. The Journal of Physical Chemistry C, 2013, 117(28): 14608-14617. |
33 | CHEN Tenghao, POPOV Ilya, ZENASNI Oussama, et al. Superhydrophobic perfluorinated metal-organic frameworks[J]. Chemical Communications, 2013, 49(61): 6846-6848. |
34 | NGUYEN Joseph G, COHEN Seth M. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification[J]. Journal of the American Chemical Society, 2010, 132(13): 4560-4561. |
35 | WU Tianjiao, SHEN Lingjuan, LUEBBERS Matthew, et al. Enhancing the stability of metal-organic frameworks in humid air by incorporating water repellent functional groups[J]. Chemical Communications, 2010, 46(33): 6120-6122. |
36 | John J LOW, BENIN Annabelle I, JAKUBCZAK Paulina, et al. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration[J]. Journal of the American Chemical Society, 2009, 131(43): 15834-15842. |
37 | DECOSTE Jared B, PETERSON Gregory W, SCHINDLER Bryan J, et al. The effect of water adsorption on the structure of the carboxylate containing metal-organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66[J]. Journal of Materials Chemistry A, 2013, 1(38): 11922-11932. |
38 | JEREMIAS Felix, LOZAN Vasile, HENNINGER Stefan K, et al. Programming MOFs for water sorption: Amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications[J]. Dalton Transactions, 2013, 42(45): 15967-15973. |
39 | ZHANG Huifeng, ZHAO Man, LIN Y S. Stability of ZIF-8 in water under ambient conditions[J]. Microporous and Mesoporous Materials, 2019, 279: 201-210. |
40 | HOWARTH Ashlee J, LIU Yangyang, LI Peng, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks[J]. Nature Reviews Materials, 2016, 1: 15018. |
41 | Pia KÜSGENS, ROSE Marcus, SENKOVSKA Irena, et al. Characterization of metal-organic frameworks by water adsorption[J]. Microporous and Mesoporous Materials, 2009, 120(3): 325-330. |
42 | PARK K S, NI ZHENG, CÔTÉ A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences, 2006, 103(27): 10186-10191. |
43 | CYCHOSZ Katie A, MATZGER Adam J. Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water[J]. Langmuir, 2010, 26(22): 17198-17202. |
44 | SERRE Christian, MILLANGE Franck, THOUVENOT Christelle, et al. Very large breathing effect in the first nanoporous chromium(Ⅲ)-based solids: MIL-53 or CrⅢ(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H} x ·H2O y [J]. Journal of the American Chemical Society, 2002, 124(45): 13519-13526. |
45 | LOISEAU T, SERRE C, HUGUENARD C, et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL‐53) upon hydration[J]. Chemistry-A European Journal, 2004, 10(6): 1373-1382. |
46 | SINDORO Melinda, Ah Young JEE, GRANICK Steve. Shape-selected colloidal MOF crystals for aqueous use[J]. Chemical Communications, 2013, 49(83): 9576-9578. |
47 | JEREMIAS Felix, KHUTIA Anupam, HENNINGER Stefan K, et al. MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—a promising application[J]. Journal of Materials Chemistry, 2012, 22(20): 10148-10151. |
48 | HORCAJADA Patricia, Suzy SURBLÉ, SERRE Christian, et al. Synthesis and catalytic properties of MIL-100(Fe), an iron(Ⅲ) carboxylate with large pores[J]. Chemical Communications, 2007(27): 2820-2822. |
49 | ČELIČ T B, MAZAJ M, MALI G, et al. Hydrothermal stability as an important characteristics of metal-organic framework materials[C]//Proceedings of the 5th Serbian-Croatian-Slovenian Symposium on Zeolites, 2013: 72-75. |
50 | SEO Y K, YOON J, LEE J S, et al. Porous materials: Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced water adsorbents [J]. Advanced Materials, 2012, 24(6): 806-810. |
51 | CUNHA Denise, YAHIA Mouna BEN, HALL Shaun, et al. Rationale of drug encapsulation and release from biocompatible porous metal-organic frameworks[J]. Chemistry of Materials, 2013, 25(14): 2767-2776. |
52 | KHAN Nazmul Abedin, LEE Ji sun, JEON Jaewoo, et al. Phase-selective synthesis and phase-conversion of porous aluminum-benzenetricarboxylates with microwave irradiation[J]. Microporous and Mesoporous Materials, 2012, 152: 235-239. |
53 | FÉREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. |
54 | HONG Do Young, HWANG Young Kyu, SERRE Christian, et al. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis[J]. Advanced Functional Materials, 2009, 19(10): 1537-1552. |
55 | HU Yuling, SONG Chaoyong, LIAO Jia, et al. Water stable metal-organic framework packed microcolumn for online sorptive extraction and direct analysis of naproxen and its metabolite from urine sample[J]. Journal of Chromatography A, 2013, 1294: 17-24. |
56 | AKIYAMA George, MATSUDA Ryotaro, SATO Hiroshi, et al. Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups[J]. Advanced Materials, 2011, 23(29): 3294-3297. |
57 | KHUTIA Anupam, RAMMELBERG Holger Urs, SCHMIDT Thomas, et al. Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application[J]. Chemistry of Materials, 2013, 25(5): 790-798. |
58 | LI Ke, YANG Jian, GU Jinlou. Salting-in species induced self-assembly of stable MOFs[J]. Chemical Science, 2019, 10(22): 5743-5748. |
59 | KIM Se Na, KIM Jun, KIM Hee Young, et al. Adsorption/catalytic properties of MIL-125 and NH2-MIL-125[J]. Catalysis Today, 2013, 204: 85-93. |
60 | Meenakshi DAN-HARDI, SERRE Christian, FROT Théo, et al. A new photoactive crystalline highly porous titanium(Ⅳ) dicarboxylate[J]. Journal of the American Chemical Society, 2009, 131(31): 10857-10859. |
61 | SCHOENECKER Paul M, CARSON Cantwell G, JASUJA Himanshu, et al. Effect of water adsorption on retention of structure and surface area of metal-organic frameworks[J]. Industrial & Engineering Chemistry Research, 2012, 51(18): 6513-6519. |
62 | GUILLERM V, RAGON F, DAN-HARDI M, et al. A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks[J]. Angewandte Chemie International Edition, 2012, 51(37): 9267-9271. |
63 | CAVKA Jasmina Hafizovic, Søren JAKOBSEN, OLSBYE Unni, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
64 | YANG Qingyuan, GUILLERM Vincent, RAGON Florence, et al. CH4 storage and CO2 capture in highly porous zirconium oxide based metal-organic frameworks[J]. Chemical Communications, 2012, 48(79): 9831-9833. |
65 | DECOSTE Jared B, PETERSON Gregory W, JASUJA Himanshu, et al. Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit[J]. Journal of Materials Chemistry A, 2013, 1(18): 5642-5650. |
66 | BARTHELET Karin, MARROT Jérôme, RIOU Didier, et al. A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics[J]. Angewandte Chemie International Edition, 2002, 41(2): 281-284. |
67 | Marta MON, BRUNO Rosaria, Jesus FERRANDO-SORIA, et al. Metal-organic framework technologies for water remediation: Towards a sustainable ecosystem[J]. Journal of Materials Chemistry A, 2018, 6(12): 4912-4947. |
68 | XUE Dongxu, CAIRNS Amy J, BELMABKHOUT Youssef, et al. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake[J]. Journal of the American Chemical Society, 2013, 135(20): 7660-7667. |
69 | XUE D, BELMABKHOUT Y, SHEKHAH O, et al. Tunable rare earth fcu-MOF platform: Access to adsorption kinetics driven gas/vapor separations via pore size contraction[J]. Journal of the American Chemical Society, 2015, 137(15): 5034-5040. |
70 | ZHANG He, LI Guoliang, ZHANG Kegang, et al. Advances of metal-organic frameworks in adsorption and separation applications[J]. Acta Chimica Sinica, 2017, 75(9): 841-859. |
71 | KANDIAH Mathivathani, NILSEN Merete Hellner, USSEGLIO Sandro, et al. Synthesis and stability of tagged UiO-66 Zr-MOFs[J]. Chemistry of Materials, 2010, 22(24): 6632-6640. |
72 | LIU Xinlei, LI Yanshuo, ZHU Guangqi, et al. An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols[J]. Angewandte Chemie, 2011, 50(45): 10636-10639. |
73 | QIAN Junfeng, SUN Fuan, QIN Lizhen. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals[J]. Materials Letters, 2012, 82: 220-223. |
74 | HUANG Hongliang, ZHANG Wenjuan, LIU Dahuan, et al. Effect of temperature on gas adsorption and separation in ZIF-8: A combined experimental and molecular simulation study[J]. Chemical Engineering Science, 2011, 66(23): 6297-6305. |
75 | HUANG Xiaochun, LIN Yanyong, ZHANG Jiepeng, et al. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(Ⅱ) imidazolates with unusual zeolitic topologies[J]. Angewandte Chemie International Edition, 2006, 45(10): 1557-1559. |
76 | LIU Yangyang, BURU Cassandra T, HOWARTH Ashlee J, et al. Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal-organic framework[J]. Journal of Materials Chemistry A, 2016, 4(36): 13809-13813. |
77 | YUAN Shuai, FENG Liang, WANG Kecheng, et al. Stable metal-organic frameworks: design, synthesis, and applications[J]. Advanced Materials, 2018, 30(37): e1704303. |
78 | BAI Zhiqiang, YUAN Liyong, ZHU Lin, et al. Introduction of amino groups into acid-resistant MOFs for enhanced U(Ⅵ) sorption[J]. Journal of Materials Chemistry A, 2015, 3(2): 525-534. |
79 | SCHIERZ A, ZÄNKER H. Aqueous suspensions of carbon nanotubes: Surface oxidation, colloidal stability and uranium sorption[J]. Environmental Pollution, 2009, 157(4): 1088-1094. |
80 | LUO Baicheng, YUAN Liyong, CHAI Zhifang, et al. U(Ⅵ) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307(1): 269-276. |
81 | TAN Chunxia, HAN Xing, LI Zijian, et al. Controlled exchange of achiral linkers with chiral linkers in Zr-based UiO-68 metal-organic framework[J]. Journal of the American Chemical Society, 2018, 140(47): 16229-16236. |
82 | AWADALLAH F A, HILLMAN F, MUHTASEB S A AL, et al. Adsorption equilibrium and kinetics of nitrogen, methane and carbon dioxide gases onto ZIF-8, Cu10%/ZIF-8, and Cu30%/ZIF-8[J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6653-6661. |
83 | SU Shouzheng, CHE Rong, LIU Qi, et al. Zeolitic Imidazolate Framework-67: A promising candidate for recovery of uranium (Ⅵ) from seawater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547: 73-80. |
84 | FENG Yafei, JIANG Heng, LI Songnan, et al. Metal-organic frameworks HKUST-1 for liquid-phase adsorption of uranium[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 431: 87-92. |
85 | FALAISE Clément, VOLKRINGER Christophe, GIOVINE Raynald, et al. Capture of actinides (Th4+, [UO2]2+) and surrogating lanthanide (Nd3+) in porous metal-organic framework MIL-100(Al) from water: Selectivity and imaging of embedded nanoparticles[J]. Dalton Transactions, 2017, 46(36): 12010-12014. |
86 | LI Jianqiang, GONG Lele, FENG Xuefeng, et al. Direct extraction of U(Ⅵ) from alkaline solution and seawater via anion exchange by metal-organic framework[J]. Chemical Engineering Journal, 2017, 316: 154-159. |
87 | WANG Lingling, LUO Feng, DANG Lilong, et al. Ultrafast high-performance extraction of uranium from seawater without pretreatment using an acylamide- and carboxyl-functionalized metal-organic framework[J]. Journal of Materials Chemistry A, 2015, 3(26): 13724-13730. |
88 | WU Yihan, PANG Hongwei, YAO Wen, et al. Synthesis of rod-like metal-organic framework (MOF-5) nanomaterial for efficient removal of U(Ⅵ): Batch experiments and spectroscopy study[J]. Science Bulletin, 2018, 63(13): 831-839. |
89 | LIU Rui, WANG Zhiqin, LIU Qingyan, et al. A zinc MOF with carboxylate oxygen-functionalized pore channels for uranium(Ⅵ) sorption[J]. European Journal of Inorganic Chemistry, 2019, 2019(5): 735-739. |
90 | ZHENG Tao, YANG Zaixing, GUI Daxiang, et al. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system[J]. Nature Communications, 2017, 8: 15369. |
91 | CHEN Long, BAI Zhuanling, ZHU Lin, et al. Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32446-32451. |
92 | WANG Chunyao, LEE Yu Jen, HSU Jhy Ping, et al. Phosphate or arsenate modified UiO-66-NO2: Amorphous mesoporous matrix[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 108: 129-133. |
93 | CARBONI Michaël, ABNEY Carter W, LIU Shubin, et al. Highly porous and stable metal-organic frameworks for uranium extraction[J]. Chemical Science, 2013, 4(6): 2396-2402. |
94 | DE DECKER Jeroen, ROCHETTE Julie, DE CLERCQ Jeriffa, et al. Carbamoylmethylphosphine oxide-functionalized MIL-101(Cr) as highly selective uranium adsorbent[J]. Analytical Chemistry, 2017, 89(11): 5678-5682. |
95 | LIU Fengtai, SONG Shanshan, CHENG Ge, et al. MIL-101(Cr) metal-organic framework functionalized with tetraethylenepentamine for potential removal of Uranium (Ⅵ) from waste water[J]. Adsorption Science & Technology, 2018, 36(7-8): 1550-1567. |
96 | ZHANG Jianyong, ZHANG Na, ZHANG Linjuan, et al. Adsorption of uranyl ions on amine-functionalization of MIL-101(Cr) nanoparticles by a facile coordination-based post-synthetic strategy and X-ray absorption spectroscopy studies[J]. Scientific Reports, 2015, 5(1): 13514. |
97 | ZHANG Le, WANG Linlin, GONG Lele, et al. Coumarin-modified microporous-mesoporous Zn-MOF-74 showing ultra-high uptake capacity and photo-switched storage/release of U(Ⅵ) ions[J]. Journal of Hazardous Materials, 2016, 311: 30-36. |
98 | WU Haoyan, CHI Fangting, ZHANG Shuo, et al. Control of pore chemistry in metal-organic frameworks for selective uranium extraction from seawater[J]. Microporous and Mesoporous Materials, 2019, 288: 109567. |
99 | LIU Lijia, FANG Yueguang, MENG Yujiang, et al. Efficient adsorbent for recovering uranium from seawater prepared by grafting amidoxime groups on chloromethylated MIL-101(Cr) via diaminomaleonitrile intermediate[J]. Desalination, 2020, 478: 114300. |
100 | YU Qiuhan, YUAN Yihui, WEN Jun, et al. A universally applicable strategy for construction of anti-biofouling adsorbents for enhanced uranium recovery from seawater[J]. Advanced Science, 2019, 6(13): 1900002. |
101 | MIN Xue, YANG Weiting, HUI Yuanfeng, et al. Fe3O4@ZIF-8: a magnetic nanocomposite for highly efficient UO2 2+ adsorption and selective UO2 2+/Ln3+ separation[J]. Chemical Communications, 2017, 53(30): 4199-4202. |
102 | ALQADAMI Ayoub Abdullah, NAUSHAD Mu, ALOTHMAN Zeid Abdullah, et al. Novel metal-organic framework (MOF) based composite material for the sequestration of U(Ⅵ) and Th(Ⅳ) metal ions from aqueous environment[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36026-36037. |
103 | XU Lin, ZHANG Duo, MA Fuyin, et al. Nano-MOF+ technique for efficient uranyl remediation[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21619-21626. |
104 | AMINI Asma, KHAJEH Mostafa, OVEISI Ali Reza, et al. A porous multifunctional and magnetic layered graphene oxide/3D mesoporous MOF nanocomposite for rapid adsorption of uranium(Ⅵ) from aqueous solutions[J]. Journal of Industrial and Engineering Chemistry, 2021, 93: 322-332. |
105 | YU Boxuan, YE Gang, CHEN Jing, et al. Membrane-supported 1D MOF hollow superstructure array prepared by polydopamine-regulated contra-diffusion synthesis for uranium entrapment[J]. Environmental Pollution, 2019, 253: 39-48. |
106 | LIU Tao, ZHANG Xiaobin, GU Anping, et al. In-situ grown bilayer MOF from robust wood aerogel with aligned microchannel arrays toward selective extraction of uranium from seawater[J]. Chemical Engineering Journal, 2022, 433: 134346. |
107 | ZHOU Qian, JIN Bo, ZHAO Ping, et al. rGO/CNQDs/ZIF-67 composite aerogel for efficient extraction of uranium in wastewater[J]. Chemical Engineering Journal, 2021, 419: 129622. |
108 | BAI Zhenyuan, LIU Qi, ZHANG Hongsen, et al. Anti-biofouling and water-Stable balanced charged metal organic framework-based polyelectrolyte hydrogels for extracting uranium from seawater[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 18012-18022. |
109 | HE Ningning, LI Hao, CHENG Chong, et al. Enhanced marine applicability of adsorbent for uranium via synergy of hyperbranched poly(amido amine) and amidoxime groups[J]. Chemical Engineering Journal, 2020, 395: 125162. |
110 | Éric ANSOBORLO, AMEKRAZ Badia, MOULIN Christophe, et al. Review of actinide decorporation with chelating agents[J]. Comptes Rendus Chimie, 2007, 10(10/11): 1010-1019. |
111 | ZHAO Zhiwei, CHENG Gong, ZHANG Yizhe, et al. Metal-organic-framework based functional materials for uranium recovery: Performance optimization and structure/functionality-activity relationships[J]. Chempluschem, 2021, 86(8): 1177-1192. |
112 | 唐朝春, 王顺藤, 黄从新, 等. 介孔金属有机框架材料吸附水中重金属离子研究进展[J]. 化工进展, 2022, 41(6): 3263-3278. |
TANG Chaochun, WANG Shunteng, HUANG Congxin, et al. Research progress on adsorption of heavy metal ions in water by mesoporous metal organic framework materials[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3263-3278. | |
113 | LI Jian hong, YANG Li xiao, LI Jian qiang, et al. Anchoring nZVI on metal-organic framework for removal of uranium(Ⅵ) from aqueous solution[J]. Journal of Solid State Chemistry, 2019, 269: 16-23. |
114 | FOTOVAT Haniyeh, KHAJEH Mostafa, OVEISI Ali Reza, et al. A hybrid material composed of an amino-functionalized zirconium-based metal-organic framework and a urea-based porous organic polymer as an efficient sorbent for extraction of uranium(Ⅵ)[J]. Microchimica Acta, 2018, 185(10): 469. |
115 | LI Fengbo, LI Xiaoyu, CUI Pu, et al. Retracted article: Plasma-grafted amidoxime/metal-organic framework composites for the selective sequestration of U(Ⅵ)[J]. Environmental Science: Nano, 2018, 5(8): 2000-2008. |
116 | LIU Haibo, LI Mengxue, CHEN Tianhu, et al. New synthesis of nZVI/C composites as an efficient adsorbent for the uptake of U(Ⅵ) from aqueous solutions[J]. Environmental Science & Technology, 2017, 51(16): 9227-9234. |
117 | LU Guang, LI Shaozhou, GUO Zhen, et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation[J]. Nature Chemistry, 2012, 4(4): 310-316. |
118 | LIU Tianqi, LI Zhan, ZHANG Xin, et al. Metal-organic framework-intercalated graphene oxide membranes for selective separation of uranium[J]. Analytical Chemistry, 2021, 93(48): 16175-16183. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[4] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[5] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[6] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[7] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[8] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[9] | LIU Nian, CHEN Kui, WU Bin, JI Lijun, WU Yanyang, HAN Jinling. Preparation of yolk-shell mesoporous magnetic carbon microspheres and its efficient adsorption of erythromycin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2724-2732. |
[10] | GUO Shuaishuai, CHEN Jinlu, JIN Liangchenglong, TAO Zui, CHEN Xiaoli, PENG Guowen. Research progress of porous aromatic frameworks based on uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1426-1436. |
[11] | CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. |
[12] | WANG Xiaoliang, YU Zhenqiu, CHANG Leiming, ZHAO Haonan, SONG Xiaoqi, GAO Jingsong, ZHANG Yibo, HUANG Chuanhui, LIU Yi, YANG Shaobin. Research progress in the preparation of hydroxide/oxide supercapacitor electrodes by electrodeposition [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5272-5285. |
[13] | ZHANG Pingping, DING Shuhai, GAO Jingjing, ZHAO Min, YU Haixiang, LIU Yuehong, GU Lin. Carbon quantum dots modified semiconductor composite photocatalysts for degradation of organic pollutants in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5487-5500. |
[14] | ZHANG Yingjie, LU Jiayue, WANG Fanggang. Synthesis of a new MCER and its performance in removing Cu(Ⅱ) from water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5558-5566. |
[15] | LIU Haicheng, MENG Wushuang, HUANG Zhe, YOU Yu, HUA Ruiqi, CAO Mengru. Preparation of WO3/BiOCl0.7I0.3 photocatalyst and its photocatalytic degradation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 255-264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |