Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (6): 2836-2844.DOI: 10.16085/j.issn.1000-6613.2022-1512
• Chemical processes and equipment • Previous Articles Next Articles
TAO Mengqi(), LIU Meihong, KANG Yuchi()
Received:
2022-08-15
Revised:
2022-10-25
Online:
2023-06-29
Published:
2023-06-25
Contact:
KANG Yuchi
通讯作者:
康宇驰
作者简介:
陶梦琦(1997—),男,硕士研究生,研究方向为流体力学。E-mail:2631281855@qq.com。
基金资助:
CLC Number:
TAO Mengqi, LIU Meihong, KANG Yuchi. Analysis of fluid across a single cylinder and two parallel cylinders in a micro flow channel by micro-PIV[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2836-2844.
陶梦琦, 刘美红, 康宇驰. 基于micro-PIV的微通道内流体绕流单微圆柱和并联双微圆柱流场特性[J]. 化工进展, 2023, 42(6): 2836-2844.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1512
d/mm | L/mm | L1/mm | S/mm | SR/mm | ST/mm | SL/mm |
---|---|---|---|---|---|---|
0.4 | 20 | 10 | 3 | 1.5 | 0.8 | 1.1 |
d/mm | L/mm | L1/mm | S/mm | SR/mm | ST/mm | SL/mm |
---|---|---|---|---|---|---|
0.4 | 20 | 10 | 3 | 1.5 | 0.8 | 1.1 |
Q/μL·min-1 | A/mm2 | Ut /m·s-1 | Re |
---|---|---|---|
5000 | 0.6 | 0.139 | 55 |
6000 | 0.167 | 67 | |
7000 | 0.194 | 78 | |
8000 | 0.222 | 89 | |
9000 | 0.250 | 100 | |
10000 | 0.278 | 111 |
Q/μL·min-1 | A/mm2 | Ut /m·s-1 | Re |
---|---|---|---|
5000 | 0.6 | 0.139 | 55 |
6000 | 0.167 | 67 | |
7000 | 0.194 | 78 | |
8000 | 0.222 | 89 | |
9000 | 0.250 | 100 | |
10000 | 0.278 | 111 |
1 | 谢远成, 欧中红. 电子设备散热技术的发展[J]. 舰船电子工程, 2019, 39(8): 14-18. |
XIE Yuancheng, Zhonghong OU. Development of heat dissipation technology for electronic equipment[J]. Ship Electronic Engineering, 2019, 39(8): 14-18. | |
2 | TULLIUS J F, TULLIUS T K, BAYAZITOGLU Y. Optimization of short micro pin fins in minichannels[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16): 3921-3932. |
3 | 梅响, 姚元鹏, 吴慧英. 连通微通道内过冷流动沸腾传热强化机理分析[J]. 化工进展, 2022, 41(6): 2884-2892. |
MEI Xiang, YAO Yuanpeng, WU Huiying. Analysis of heat transfer enhancement mechanism on subcooled flow boiling in interconnected microchannels[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2884-2892. | |
4 | 许浩榕, 孙欢, 朱宏伟, 等. 纵向肋间距对微针肋散热器流动传热特性影响的模拟研究[J]. 冷藏技术, 2022, 45(2): 43-51. |
XU Haorong, SUN Huan, ZHU Hongwei, et al. Simulation study on the effect of vertical pin spacing on thermal-hydraulic characteristics of micro-pin-fin heat sinks[J]. Journal of Refrigeration Technology, 2022, 45(2): 43-51. | |
5 | PELES Yoav, Ali KOŞAR, MISHRA Chandan, et al. Forced convective heat transfer across a pin fin micro heat sink[J]. International Journal of Heat and Mass Transfer, 2005, 48(17): 3615-3627. |
6 | 刘东, 舒宇, 何蔚然, 等. 微针肋槽道内去离子水换热特性[J]. 强激光与粒子束, 2018, 30(4): 25-30. |
LIU Dong, SHU Yu, HE Weiran, et al. Heat transfer characteristics of mini pin-fin channels[J]. High Power Laser and Particle Beams, 2018, 30(4): 25-30. | |
7 | 徐迪. 不同形状微针肋流动与换热性能模拟与试验研究[D]. 南京: 南京师范大学, 2020. |
XU Di. Simulation and experimental study of flow and heat transfer performance of microneedle ribs of different shapes[D]. Nanjing: Nanjing Normal University, 2020. | |
8 | 宋虹, 黄维平, 付雪鹏. 基于模型试验和数值模拟的柔性串列圆柱体涡激振动研究[J]. 振动与冲击, 2020, 39(6): 64-73. |
SONG Hong, HUANG Weiping, FU Xuepeng. Vortex induced vibration of flexible tandem cylinders based on model tests and numerical simulations[J]. Journal of Vibration and Shock, 2020, 39(6): 64-73. | |
9 | 赵鹏, 王晓凯, 张耀. 小尺寸低质量比的并联圆柱涡激振动仿真研究[J]. 石油机械, 2022, 50(6): 50-57. |
ZHAO Peng, WANG Xiaokai, ZHANG Yao. Simulation study on vortex-induced vibration of small-sized side-by-side cylinders with low mass ratio[J]. China Petroleum Machinery, 2022, 50(6): 50-57. | |
10 | 刘志刚, 吕明明, 孔令健, 等. 基于Micro-PIV的不同截面形状微柱群内部流场特性研究[J]. 山东科学, 2019, 32(5): 81-87. |
LIU Zhigang, Mingming LYU, KONG Lingjian, et al. Study on flow field in micro-cylinder groups with different cross-section shapes by micro-PIV method[J]. Shandong Science, 2019, 32(5): 81-87. | |
11 | QIN Luwen, HUA Junye, ZHAO Xiaobao, et al. Micro-PIV and numerical study on influence of vortex on flow and heat transfer performance in micro arrays[J]. Applied Thermal Engineering, 2019, 161: 114186. |
12 | 王乐, 翁建华. 微柱群流动及换热研究进展[J]. 化工进展, 2020, 39(11): 4330-4341. |
WANG Le, WENG Jianhua. Research progress of flow and heat transfer in micro-pin-fins[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4330-4341. | |
13 | 马超. 不同排列方式的微柱群通道内流动的Micro-PIV研究[D]. 北京: 华北电力大学, 2021. |
MA Chao. Micro-PIV study of flow in micro-column channels with different arrangements[D]. Beijing: North China Electric Power University, 2021. | |
14 | XIA Guodong, CHEN Zhuo, CHENG Lixin, et al. Micro-PIV visualization and numerical simulation of flow and heat transfer in three micro pin-fin heat sinks[J]. International Journal of Thermal Sciences, 2017, 119: 9-23. |
15 | 刘志刚, 董开明, 吕明明, 等. 基于微观粒子图像测速法的微肋阵通道内流场特性研究[J]. 化工学报, 2021, 72(10): 5094-5101. |
LIU Zhigang, DONG Kaiming, Mingming LYU, et al. Study on characteristics of flow field in micro pin fin array based on micro-PIV[J]. CIESC Journal, 2021, 72(10): 5094-5101. | |
16 | LIU Z G, GUAN N, ZHANG C W, et al. The flow resistance and heat transfer characteristics of micro pin-fins with different cross-sectional shapes[J]. Nanoscale and Microscale Thermophysical Engineering, 2015, 19(3): 221-243. |
17 | YANG Dawei, WANG Yan, DING Guifu, et al. Numerical and experimental analysis of cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations[J]. Applied Thermal Engineering, 2017, 112: 1547-1556. |
18 | AMBREEN T, KIM M H. Effect of fin shape on the thermal performance of nanofluid-cooled micro pin-fin heat sinks[J]. International Journal of Heat and Mass Transfer, 2018, 126: 245-256. |
19 | XU Fayao, PAN Zhenhai, WU Huiying. Experimental investigation on the flow transition in different pin-fin arranged microchannels[J]. Microfluidics and Nanofluidics, 2018, 22(1): 1-13. |
20 | 刘中春, 侯吉瑞, 岳湘安. 微尺度流动界面现象及其流动边界条件分析[J]. 水动力学研究与进展(A辑), 2006, 21(3): 339-346. |
LIU Zhongchun, HOU Jirui, YUE Xiangan. Interfacial phenomena in micro-scale flowing and its flowing boundary condition[J]. Journal of Hydrodynamics(Ser. A), 2006, 21(3): 339-346. | |
21 | 孙江龙, 吕续舰, 郭磊, 等. 微尺度流动研究的简要综述[J]. 机械强度, 2010, 32(3): 502-508. |
SUN Jianglong, Xujian LYU, GUO Lei, et al. Brief summarization of micro-scale flow research[J]. Journal of Mechanical Strength, 2010, 32(3): 502-508. | |
22 | MEIS M, VARAS F, VELÁZQUEZ A, et al. Heat transfer enhancement in micro-channels caused by vortex promoters[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/2/3): 29-40. |
23 | JUNG J, KUO C J, PELES Y, et al. The flow field around a micropillar confined in a microchannel[J]. International Journal of Heat and Fluid Flow, 2012, 36: 118-132. |
24 | 季璨, 吕明明, 黄继凯, 等. 微通道内单柱绕流特性的实验研究[J]. 工程热物理学报, 2021, 42(7): 1844-1850. |
JI Can, Mingming LYU, HUANG Jikai, et al. Experimental study on flow around a single pin fin in a microchannel[J]. Journal of Engineering Thermophysics, 2021, 42(7): 1844-1850. | |
25 | 李济超, 季璨, 吕明明, 等. 微通道内单柱绕流特性的Micro-PIV实验研究[J]. 化工学报, 2020, 71(4): 1844-1850. |
LI Jichao, JI Can, Mingming LYU, et al. Experimental study on characteristics of flow around single cylinder in microchannel based on micro-PIV[J]. CIESC Journal, 2020, 71(4): 1844-1850. | |
26 | 张立. 小雷诺数下圆柱绕流的数值模拟[J]. 力学季刊, 2010, 31(4): 543-547. |
ZHANG Li. Numerical simulation of flow around circular cylinder with small Reynolds numbers[J]. Chinese Quarterly of Mechanics, 2010, 31(4): 543-547. | |
27 | 凌杰, 王毅. 小雷诺数下圆柱绕流数值模拟[J]. 机械工程与自动化, 2019(2): 87-88, 91. |
LING Jie, WANG Yi. Numerical simulation of circular flow around a cylinder at small Reynolds number[J]. Mechanical Engineering & Automation, 2019(2): 87-88, 91. |
[1] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[2] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[3] | CHEN Weiyang, SONG Xin, YIN Yaran, ZHANG Xianming, ZHU Chunying, FU Taotao, MA Youguang. Effect of liquid viscosity on bubble interface in the rectangular microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3468-3477. |
[4] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[5] | WU Xia, JIANG Xuntao, ZHANG Yuxiao, LYU Huiyuan, HUANG Fang, YU Xiaoxi. Protein crystallization research based on droplet microfluidics [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2024-2030. |
[6] | TIAN Qikai, ZHENG Haiping, ZHANG Shaobin, ZHANG Jing, YU Ziyi. Advances in mixing enhanced microfluidic channels [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1677-1687. |
[7] | LUO Xiaoping, FAN Peng, ZHOU Jianyang, WANG Mengyuan. Boiling curve and onset of nucleate boiling of microchannels with corrugated walls [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1228-1239. |
[8] | ZHANG Meng, LI Shuqian, ZHANG Dong, MA Kunru. Motion characteristics for vapor-liquid interfaces of direct contact condensation in a microchannel [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4644-4652. |
[9] | MAO Jijin, ZHANG Donghui, SUN Lili, LEI Qinhui, QU Jian. Boiling heat transfer and resistance characteristics of two types of sintered structures [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3483-3492. |
[10] | MEI Xiang, YAO Yuanpeng, WU Huiying. Analysis of heat transfer enhancement mechanism on subcooled flow boiling in interconnected microchannels [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2884-2892. |
[11] | WANG Long, LIU Yongfeng, BI Guijun, SONG Jin’ou. Characteristics of diesel combustion under CO2/O2 atmosphere by quantum chemistry calculations [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2948-2958. |
[12] | ZHANG Yan, WANG Wei, XIE Rui, JU Xiaojie, LIU Zhuang, CHU Liangyin. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8 [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. |
[13] | TAN Wei, WANG Zhongchen, FAN Xiantao, TANG Bowen. Cross-flow vibration characteristics of parallel towers and non-smooth surface vibration reduction [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1750-1758. |
[14] | LUO Mingyun, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress of battery thermal management system based on phase change heat storage technology [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1594-1607. |
[15] | ZENG Cheng, LU Wei, MENG Shida, QIN Rishuai. Thermal-transpiration-effect-based carbon dioxide separation system for flue gas from coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5214-5220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |