Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (4): 2130-2141.DOI: 10.16085/j.issn.1000-6613.2022-1108
• Resources and environmental engineering • Previous Articles Next Articles
GONG Chenjun1,2(), MEI Daofeng1,2,3(
)
Received:
2022-06-13
Revised:
2022-08-22
Online:
2023-05-08
Published:
2023-04-25
Contact:
MEI Daofeng
通讯作者:
梅道锋
作者简介:
龚陈俊(1997—),男,硕士研究生,研究方向为化学链技术。E-mail:gcjifuli@126.com。
基金资助:
CLC Number:
GONG Chenjun, MEI Daofeng. Effects of tungsten decoration on the performance of a Ni-based oxygen carrier during chemical looping reforming of biogas for hydrogen generation[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2130-2141.
龚陈俊, 梅道锋. 钨修饰对镍载氧体的沼气化学链重整制氢性能影响[J]. 化工进展, 2023, 42(4): 2130-2141.
特征量 | OC-Ni-W (先镍后钨) | OC-Ni=W (镍钨同时) | OC-W-Ni (先钨后镍) | 10%NiO (未经W修饰) |
---|---|---|---|---|
Ni(质量分数)/% | 7.85 | 7.85 | 7.85 | 7.85 |
W(质量分数)/% | 0.79 | 0.79 | 0.79 | 0 |
载氧率ROC(质量分数)/% | 2.35 | 2.35 | 2.35 | 2.14 |
粒径/μm | 106~300 | 106~300 | 106~300 | 106~300 |
堆积密度/g·cm-3 | 2.4 | 2.5 | 2.5 | 2.5 |
破碎强度/N | 3.72 | 3.63 | 4.09 | 4.4 |
特征量 | OC-Ni-W (先镍后钨) | OC-Ni=W (镍钨同时) | OC-W-Ni (先钨后镍) | 10%NiO (未经W修饰) |
---|---|---|---|---|
Ni(质量分数)/% | 7.85 | 7.85 | 7.85 | 7.85 |
W(质量分数)/% | 0.79 | 0.79 | 0.79 | 0 |
载氧率ROC(质量分数)/% | 2.35 | 2.35 | 2.35 | 2.14 |
粒径/μm | 106~300 | 106~300 | 106~300 | 106~300 |
堆积密度/g·cm-3 | 2.4 | 2.5 | 2.5 | 2.5 |
破碎强度/N | 3.72 | 3.63 | 4.09 | 4.4 |
参数 | 数值 |
---|---|
载氧体质量/g | 300 |
温度/℃ | 950 |
还原气氛 | 15%CH4+10%CO2+25%H2O+50%N2或15%CH4+10%CO2+25%H2O+50%N2+1000μL/LH2S |
沼气中CH4/CO2摩尔比 | 3/2 |
水蒸气浓度/% | 25 |
氧化气氛 | 100%Air(21%O2+79%N2) |
还原时长/min | 10 |
氧化时长/min | 10 |
吹扫时长/min | 2.5 |
气体流量/L·h-1 | 200 |
参数 | 数值 |
---|---|
载氧体质量/g | 300 |
温度/℃ | 950 |
还原气氛 | 15%CH4+10%CO2+25%H2O+50%N2或15%CH4+10%CO2+25%H2O+50%N2+1000μL/LH2S |
沼气中CH4/CO2摩尔比 | 3/2 |
水蒸气浓度/% | 25 |
氧化气氛 | 100%Air(21%O2+79%N2) |
还原时长/min | 10 |
氧化时长/min | 10 |
吹扫时长/min | 2.5 |
气体流量/L·h-1 | 200 |
1 | JI X, LONG X. A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 41-52. |
2 | APREA J L, BOLCICH J C. The energy transition towards hydrogen utilization for green life and sustainable human development in Patagonia[J]. International Journal of Hydrogen Energy, 2020, 45(47): 25627-25645. |
3 | BAEK B, ABOIRALOR A, WANG S, et al. Strategy to improve catalytic trend predictions for methane oxidation and reforming[J]. AIChE Journal, 2017, 63(1): 66-77. |
4 | BALIBAN R C, ELIA J A, FLOUDAS C A. Novel natural gas to liquids processes: Process synthesis and global optimization strategies[J]. AIChE Journal, 2013, 59(2): 505-531. |
5 | GARCÍA-LABIANO F, GARCÍA-DÍEZ E, DE DIEGO L F, et al. Syngas/H2 production from bioethanol in a continuous chemical-looping reforming prototype[J]. Fuel Processing Technology, 2015, 137: 24-30. |
6 | 梅道锋, 赵海波, 晏水平, 等. 高铝耐火砖负载NiO氧载体的沼气化学链重整制氢流化床实验研究[J]. 中国电机工程学报, 2019, 39(24): 7253-7262, 7498. |
MEI Daofeng, ZHAO Haibo, YAN Shuiping, et al. Chemical looping reforming of biogas for hydrogen generation using a high-aluminum refractory brick supported NiO oxygen carrier[J]. Proceedings of the CSEE, 2019, 39(24): 7253-7262, 7498. | |
7 | MENDIARA T, GARCÍA-LABIANO F, ABAD A, et al. Negative CO2 emissions through the use of biofuels in chemical looping technology: A review[J]. Applied Energy, 2018, 232: 657-684. |
8 | 赵海波, 陈猛, 熊杰, 等. 化学链重整制氢系统的过程模拟[J]. 中国电机工程学报, 2012, 32(11): 87-94, 150. |
ZHAO Haibo, CHEN Meng, XIONG Jie, et al. Process simulation of chemical looping reforming systems for hydrogen production[J]. Proceedings of the CSEE, 2012, 32(11): 87-94, 150. | |
9 | ORTIZ M, ABAD A, DE DIEGO L F, et al. Optimization of hydrogen production by chemical-looping auto-thermal reforming working with Ni-based oxygen-carriers[J]. International Journal of Hydrogen Energy, 2011, 36(16): 9663-9672. |
10 | MEI D, LINDERHOLM C, LYNGFELT A. Performance of an oxy-polishing step in the 100kWth chemical looping combustion prototype[J]. Chemical Engineering Journal, 2021, 409: 128202. |
11 | 梅道锋, 赵海波, 晏水平. 基于NiO/Ca2Al2SiO7的沼气自热化学链重整制氢热分析动力学模拟[J]. 化工学报, 2019, 70(S1): 193-201. |
MEI Daofeng, ZHAO Haibo, YAN Shuiping. Thermodynamics simulation of biogas fueled chemical looping reforming for H2 generation using NiO/Ca2Al2SiO7 [J]. CIESC Journal, 2019, 70(S1): 193-201. | |
12 | ZHENG T, LI M, MEI D, et al. Effect of H2S presence on chemical looping reforming(CLR) of biogas with a firebrick supported NiO oxygen carrier[J]. Fuel Processing Technology, 2022, 226: 107088. |
13 | CHATTANATHAN S A, ADHIKARI S, MCVEY M, et al. Hydrogen production from biogas reforming and the effect of H2S on CH4 conversion[J]. International Journal of Hydrogen Energy, 2014, 39(35): 19905-19911. |
14 | 柳海涛, 田宏, 王晓来. Mo、W金属氧化物对CH4/CO2重整Ni基催化剂性能的影响[J]. 分子催化, 2007, 21(4): 304-307. |
LIU Haitao, TIAN Hong, WANG Xiaolai. Effects of Mo, W metal oxide on the performance of Ni-based catalysts for CO2 reforming of CH4 [J]. Journal of Molecular Catalysis, 2007, 21(4): 304-307. | |
15 | KIM D, KWAK B S, MIN B K, et al. Characterization of Ni and W co-loaded SBA-15 catalyst and its hydrogen production catalytic ability on ethanol steam reforming reaction[J]. Applied Surface Science, 2015, 332: 736-746. |
16 | FOUSKAS A, KOLLIA M, KAMBOLIS A, et al. Boron-modified Ni/Al2O3 catalysts for reduced carbon deposition during dry reforming of methane[J]. Applied Catalysis A: General, 2014, 474: 125-134. |
17 | 韩丹华, 郭雪岩, 王志远. 化学链重整制氢NiO-CeO2/γ-Al2O3复合载氧体的性能[J]. 化工进展, 2022, 41(1): 192-200. |
HAN Danhua, GUO Xueyan, WANG Zhiyuan. Performance of NiO-CeO2/γ-Al2O3 composite oxygen carriers for hydrogen generation with chemical looping reforming[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 192-200. | |
18 | 陈曦. 镍基催化剂制备及在甲烷水蒸气重整反应中的应用[D]. 大连: 大连理工大学, 2014. |
CHEN Xi. Preparation of Ni-based catalysts and application in steam reforming of methane[D]. Dalian: Dalian University of Technology, 2014. | |
19 | AKANSU H, ARBAG H, TASDEMIR H M, et al. Nickel-based alumina supported catalysts for dry reforming of biogas in the absence and the presence of H2S: Effect of manganese incorporation[J]. Catalysis Today, 2022, 397/398/399: 37-49 . |
20 | LIU X, YAN J, MAO J, et al. Inhibitor, co-catalyst, or intermetallic promoter? Probing the sulfur-tolerance of MoO x surface decoration on Ni/SiO2 during methane dry reforming[J]. Applied Surface Science, 2021, 548: 149231. |
21 | SATO K, FUJIMOTO K. Development of new nickel based catalyst for tar reforming with superior resistance to sulfur poisoning and coking in biomass gasification[J]. Catalysis Communications, 2007, 8(11): 1697-1701. |
22 | 刘沛聪, 梅道锋, 晏水平. 高铝耐火砖负载CuO氧载体的化学链氧解耦特性实验[J]. 化工进展, 2019, 38(12): 5351-5359. |
LIU Peicong, MEI Daofeng, YAN Shuiping. Characteristics tests of a high-alumina refractory supported CuO oxygen carrier during chemical looping with oxygen uncoupling[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5351-5359. | |
23 | World Health Organization. S.3.6. Bulk density and tapped density of powders: Final text for addition to The International Pharmacopoeia[M]. World Health Organization, 2012. |
24 | JOHANSSON M, MATTISSON T, LYNGFELT A. Investigation of Fe2O3 with MgAl2O4 for chemical-looping combustion[J]. Industrial & Engineering Chemistry Research, 2004, 43(22): 6978-6987. |
25 | LI M, ZHENG T, MEI D, et al. Selecting and testing of cement-bonded magnetite and chalcopyrite as oxygen carrier for chemical-looping combustion[J]. Energies, 2022, 15(14): 5093. |
26 | ZHANG S, SHI C, CHEN B, et al. An active and coke-resistant dry reforming catalyst comprising nickel-tungsten alloy nanoparticles[J]. Catalysis Communications, 2015, 69: 123-128. |
27 | YORK A P E, SUHARTANTO T, GREEN M L H. Influence of molybdenum and tungsten dopants on nickel catalysts for the dry reforming of methane with carbon dioxide to synthesis gas[C]//Natural Gas Conversion V, Proceedings of the 5th International Natural Gas Conversion Symposium. Amsterdam: Elsevier, 1998: 777-782. |
28 | ARBAG H, YASYERLI S, YASYERLI N, et al. Coke minimization during conversion of biogas to syngas by bimetallic tungsten-nickel incorporated mesoporous alumina synthesized by the one-pot route[J]. Industrial & Engineering Chemistry Research, 2015, 54(8): 2290-2301. |
29 | ZHOU L, LI L, WEI N, et al. Effect of NiAl2O4 Formation on Ni/Al2O3 Stability during dry reforming of methane[J]. ChemCatChem, 2015, 7(16): 2508-2516. |
30 | MATTISSON T, JOHANSSON M, LYNGFELT A. The use of NiO as an oxygen carrier in chemical-looping combustion[J]. Fuel, 2006, 85(5/6): 736-747. |
31 | VROULIAS D, GKOULEMANI N, PAPADOPOULOU C, et al. W-modified Ni/Al2O3 catalysts for the dry reforming of methane: Effect of W loading[J]. Catalysis Today, 2020, 355: 704-715. |
[1] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[2] | CHANG Zhankun, ZHANG Chi, SU Bingqin, ZHANG Congzheng, WANG Jian, QUAN Xiaohui. Effect of H2S gaseous substrate on sludge bioleaching treatment efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2733-2743. |
[3] | YUAN Li, WANG Xueqian, LI Xiang, WANG Langlang, MA Yixing, NING ping, XIONG Yiran. Research advances on catalytic removal COS and H2S from by-product gas in iron and steel industry [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5147-5161. |
[4] | ZHANG Xinhai, ZHAO Sichen, ZHU Hui, ZHANG Shoushi, WANG Kai. Comparative study on desulfurization performance of various carbon materials combined with sodium carbonate [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 424-435. |
[5] | ZHANG Xinhai, ZHAO Sichen, ZHU Hui, WANG Kai, ZHANG Shoushi. Application of activated carbon fiber supported desulfurizer in mine gas environment [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 415-423. |
[6] | LIU Yang, YE Xiaomei, WANG Chengcheng, JIA Zhaoyan, DU Jing, KONG Xiangping, XI Yonglan. Optimization of anaerobic co-digestion process of rural organic household waste with other substrates [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2770-2777. |
[7] | ZHOU Ying, LI Yeqing, ZHOU Hongjun, XU Chunming. Exploration of bio-energy in promoting rural revitalization in China [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6195-6199. |
[8] | LENG Nanjiang, MA Guoguang, ZHANG Tao, LEI Yang, PENG Hao, XIONG Zuoshuai, CHEN Yuting. Research and exploration on purification of natural gas with high organic sulfur content [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5342-5353. |
[9] | HAN Danhua, GUO Xueyan, WANG Zhiyuan. Performance of NiO-CeO2/γ-Al2O3 composite oxygen carriers for hydrogen generation with chemical looping reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 192-200. |
[10] | CHEN Zheng, ZHAO Xiumei, MU Tingzhen, YANG Maohua, MIAO Delu, ZHAO Xuhao, ZHANG Jian, XING Jianmin. Advance in biological desulfurization technology of natural gas [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2471-2483. |
[11] | LI Qiaochun, GUO Enhui, LI Yang, MI Jie, WU Mengmeng. Desulfurization and regeneration behaviors of zinc-based composite oxides derived from hydrotalcite [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6278-6286. |
[12] | Kaige GAO, Yong LI, Xianjun ZHU, Pengfei GE, Guili ZHAO, Minggang LIU, Mingyu PANG. Safety evaluation of well control of high-sulfur gas wells and measures to improve blowout emergency capability [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 83-88. |
[13] | Kai ZHANG, Xiuli WEI, Bing WANG, Tao JIANG, Ke LIU. Degradation of Rhodamine B by sodium persulfate activated with Fe3O4 modified hydrochar [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2867-2875. |
[14] | Xikun GAI,Dan YANG,Peng LÜ,Chuang XING,Chengxue LÜ,Ruiqin YANG. Mixed-reforming of biogas to syngas over the Ni-CeO2-K/γ-Al2O3 catalyst [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1357-1362. |
[15] | Jun XU,Wenzhe ZHU,Li XIE. Effect of bioaugmentation on the performance of anaerobic digestion: a review [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4227-4237. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 201
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 255
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |