1 |
JI X, LONG X. A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 41-52.
|
2 |
APREA J L, BOLCICH J C. The energy transition towards hydrogen utilization for green life and sustainable human development in Patagonia[J]. International Journal of Hydrogen Energy, 2020, 45(47): 25627-25645.
|
3 |
BAEK B, ABOIRALOR A, WANG S, et al. Strategy to improve catalytic trend predictions for methane oxidation and reforming[J]. AIChE Journal, 2017, 63(1): 66-77.
|
4 |
BALIBAN R C, ELIA J A, FLOUDAS C A. Novel natural gas to liquids processes: Process synthesis and global optimization strategies[J]. AIChE Journal, 2013, 59(2): 505-531.
|
5 |
GARCÍA-LABIANO F, GARCÍA-DÍEZ E, DE DIEGO L F, et al. Syngas/H2 production from bioethanol in a continuous chemical-looping reforming prototype[J]. Fuel Processing Technology, 2015, 137: 24-30.
|
6 |
梅道锋, 赵海波, 晏水平, 等. 高铝耐火砖负载NiO氧载体的沼气化学链重整制氢流化床实验研究[J]. 中国电机工程学报, 2019, 39(24): 7253-7262, 7498.
|
|
MEI Daofeng, ZHAO Haibo, YAN Shuiping, et al. Chemical looping reforming of biogas for hydrogen generation using a high-aluminum refractory brick supported NiO oxygen carrier[J]. Proceedings of the CSEE, 2019, 39(24): 7253-7262, 7498.
|
7 |
MENDIARA T, GARCÍA-LABIANO F, ABAD A, et al. Negative CO2 emissions through the use of biofuels in chemical looping technology: A review[J]. Applied Energy, 2018, 232: 657-684.
|
8 |
赵海波, 陈猛, 熊杰, 等. 化学链重整制氢系统的过程模拟[J]. 中国电机工程学报, 2012, 32(11): 87-94, 150.
|
|
ZHAO Haibo, CHEN Meng, XIONG Jie, et al. Process simulation of chemical looping reforming systems for hydrogen production[J]. Proceedings of the CSEE, 2012, 32(11): 87-94, 150.
|
9 |
ORTIZ M, ABAD A, DE DIEGO L F, et al. Optimization of hydrogen production by chemical-looping auto-thermal reforming working with Ni-based oxygen-carriers[J]. International Journal of Hydrogen Energy, 2011, 36(16): 9663-9672.
|
10 |
MEI D, LINDERHOLM C, LYNGFELT A. Performance of an oxy-polishing step in the 100kWth chemical looping combustion prototype[J]. Chemical Engineering Journal, 2021, 409: 128202.
|
11 |
梅道锋, 赵海波, 晏水平. 基于NiO/Ca2Al2SiO7的沼气自热化学链重整制氢热分析动力学模拟[J]. 化工学报, 2019, 70(S1): 193-201.
|
|
MEI Daofeng, ZHAO Haibo, YAN Shuiping. Thermodynamics simulation of biogas fueled chemical looping reforming for H2 generation using NiO/Ca2Al2SiO7 [J]. CIESC Journal, 2019, 70(S1): 193-201.
|
12 |
ZHENG T, LI M, MEI D, et al. Effect of H2S presence on chemical looping reforming(CLR) of biogas with a firebrick supported NiO oxygen carrier[J]. Fuel Processing Technology, 2022, 226: 107088.
|
13 |
CHATTANATHAN S A, ADHIKARI S, MCVEY M, et al. Hydrogen production from biogas reforming and the effect of H2S on CH4 conversion[J]. International Journal of Hydrogen Energy, 2014, 39(35): 19905-19911.
|
14 |
柳海涛, 田宏, 王晓来. Mo、W金属氧化物对CH4/CO2重整Ni基催化剂性能的影响[J]. 分子催化, 2007, 21(4): 304-307.
|
|
LIU Haitao, TIAN Hong, WANG Xiaolai. Effects of Mo, W metal oxide on the performance of Ni-based catalysts for CO2 reforming of CH4 [J]. Journal of Molecular Catalysis, 2007, 21(4): 304-307.
|
15 |
KIM D, KWAK B S, MIN B K, et al. Characterization of Ni and W co-loaded SBA-15 catalyst and its hydrogen production catalytic ability on ethanol steam reforming reaction[J]. Applied Surface Science, 2015, 332: 736-746.
|
16 |
FOUSKAS A, KOLLIA M, KAMBOLIS A, et al. Boron-modified Ni/Al2O3 catalysts for reduced carbon deposition during dry reforming of methane[J]. Applied Catalysis A: General, 2014, 474: 125-134.
|
17 |
韩丹华, 郭雪岩, 王志远. 化学链重整制氢NiO-CeO2/γ-Al2O3复合载氧体的性能[J]. 化工进展, 2022, 41(1): 192-200.
|
|
HAN Danhua, GUO Xueyan, WANG Zhiyuan. Performance of NiO-CeO2/γ-Al2O3 composite oxygen carriers for hydrogen generation with chemical looping reforming[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 192-200.
|
18 |
陈曦. 镍基催化剂制备及在甲烷水蒸气重整反应中的应用[D]. 大连: 大连理工大学, 2014.
|
|
CHEN Xi. Preparation of Ni-based catalysts and application in steam reforming of methane[D]. Dalian: Dalian University of Technology, 2014.
|
19 |
AKANSU H, ARBAG H, TASDEMIR H M, et al. Nickel-based alumina supported catalysts for dry reforming of biogas in the absence and the presence of H2S: Effect of manganese incorporation[J]. Catalysis Today, 2022, 397/398/399: 37-49 .
|
20 |
LIU X, YAN J, MAO J, et al. Inhibitor, co-catalyst, or intermetallic promoter? Probing the sulfur-tolerance of MoO x surface decoration on Ni/SiO2 during methane dry reforming[J]. Applied Surface Science, 2021, 548: 149231.
|
21 |
SATO K, FUJIMOTO K. Development of new nickel based catalyst for tar reforming with superior resistance to sulfur poisoning and coking in biomass gasification[J]. Catalysis Communications, 2007, 8(11): 1697-1701.
|
22 |
刘沛聪, 梅道锋, 晏水平. 高铝耐火砖负载CuO氧载体的化学链氧解耦特性实验[J]. 化工进展, 2019, 38(12): 5351-5359.
|
|
LIU Peicong, MEI Daofeng, YAN Shuiping. Characteristics tests of a high-alumina refractory supported CuO oxygen carrier during chemical looping with oxygen uncoupling[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5351-5359.
|
23 |
World Health Organization. S.3.6. Bulk density and tapped density of powders: Final text for addition to The International Pharmacopoeia[M]. World Health Organization, 2012.
|
24 |
JOHANSSON M, MATTISSON T, LYNGFELT A. Investigation of Fe2O3 with MgAl2O4 for chemical-looping combustion[J]. Industrial & Engineering Chemistry Research, 2004, 43(22): 6978-6987.
|
25 |
LI M, ZHENG T, MEI D, et al. Selecting and testing of cement-bonded magnetite and chalcopyrite as oxygen carrier for chemical-looping combustion[J]. Energies, 2022, 15(14): 5093.
|
26 |
ZHANG S, SHI C, CHEN B, et al. An active and coke-resistant dry reforming catalyst comprising nickel-tungsten alloy nanoparticles[J]. Catalysis Communications, 2015, 69: 123-128.
|
27 |
YORK A P E, SUHARTANTO T, GREEN M L H. Influence of molybdenum and tungsten dopants on nickel catalysts for the dry reforming of methane with carbon dioxide to synthesis gas[C]//Natural Gas Conversion V, Proceedings of the 5th International Natural Gas Conversion Symposium. Amsterdam: Elsevier, 1998: 777-782.
|
28 |
ARBAG H, YASYERLI S, YASYERLI N, et al. Coke minimization during conversion of biogas to syngas by bimetallic tungsten-nickel incorporated mesoporous alumina synthesized by the one-pot route[J]. Industrial & Engineering Chemistry Research, 2015, 54(8): 2290-2301.
|
29 |
ZHOU L, LI L, WEI N, et al. Effect of NiAl2O4 Formation on Ni/Al2O3 Stability during dry reforming of methane[J]. ChemCatChem, 2015, 7(16): 2508-2516.
|
30 |
MATTISSON T, JOHANSSON M, LYNGFELT A. The use of NiO as an oxygen carrier in chemical-looping combustion[J]. Fuel, 2006, 85(5/6): 736-747.
|
31 |
VROULIAS D, GKOULEMANI N, PAPADOPOULOU C, et al. W-modified Ni/Al2O3 catalysts for the dry reforming of methane: Effect of W loading[J]. Catalysis Today, 2020, 355: 704-715.
|