Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (4): 1739-1759.DOI: 10.16085/j.issn.1000-6613.2022-1070
• Energy processes and technology • Previous Articles Next Articles
LIU Jia1,2(), LIANG Deqing1(), LI Junhui1,3, LIN Decai1,3, WU Siting1,2, LU Fuqin1,2
Received:
2022-06-08
Revised:
2022-10-22
Online:
2023-05-08
Published:
2023-04-25
Contact:
LIANG Deqing
刘佳1,2(), 梁德青1(), 李君慧1,3, 林德才1,3, 吴思婷1,2, 卢富勤1,2
通讯作者:
梁德青
作者简介:
刘佳(1992—),女,博士,研究方向为天然气水合物。E-mail:yqcylj@126.com。
基金资助:
CLC Number:
LIU Jia, LIANG Deqing, LI Junhui, LIN Decai, WU Siting, LU Fuqin. A review of flow assurance studies on hydrate slurry in oil-water system[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1739-1759.
刘佳, 梁德青, 李君慧, 林德才, 吴思婷, 卢富勤. 油水体系水合物浆液流动保障研究进展[J]. 化工进展, 2023, 42(4): 1739-1759.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1070
154 | FROSTMAN L M, PRZYBYLINSKI J L. Successful applications of anti-agglomerant hydrate inhibitors[C]//SPE International Symposium on Oilfield Chemistry. Houston: SPE, 2001. |
155 | MEHTA A P, HEBERT P B, CADENA E R, et al. Fulfilling the promise of low-dosage hydrate inhibitors: journey from academic curiosity to successful field implementation[J]. SPE Production & Facilities, 2003, 18(1): 73-79. |
156 | 任悦萌, 闫柯乐. 水合物阻聚剂性能评价方法研究进展[J]. 应用化工, 2021, 50(5): 1335-1340. |
REN Yuemeng, YAN Kele. Research progress on performance evaluation methods of hydrate anti-agglomerant[J]. Applied Chemical Industry, 2021, 50(5): 1335-1340. | |
157 | Dalton YORK J, FIROOZABADI Abbas. Comparing effectiveness of rhamnolipid biosurfactant with a quaternary ammonium salt surfactant for hydrate anti-agglomeration[J]. The Journal of Physical Chemistry B, 2008, 112(3): 845-851. |
158 | SUN Minwei, FIROOZABADI Abbas. New surfactant for hydrate anti-agglomeration in hydrocarbon flowlines and seabed oil capture[J]. Journal of Colloid and Interface Science, 2013, 402: 312-319. |
159 | CHEN Jun, SUN Changyu, PENG Baozi, et al. Screening and compounding of gas hydrate anti-agglomerants from commercial additives through morphology observation[J]. Energy & Fuels, 2013, 27(5): 2488-2496. |
160 | PENG Baozi, CHEN Jun, SUN Changyu, et al. Flow characteristics and morphology of hydrate slurry formed from (natural gas+diesel oil/condensate oil+water) system containing anti-agglomerant[J]. Chemical Engineering Science, 2012, 84: 333-344. |
161 | DONG Sanbao, LI Mingzhong, FIROOZABADI Abbas. Effect of salt and water cuts on hydrate anti-agglomeration in a gas condensate system at high pressure[J]. Fuel, 2017, 210: 713-720. |
162 | DONG Sanbao, FIROOZABADI Abbas. Hydrate anti-agglomeration and synergy effect in normal octane at varying water cuts and salt concentrations[J]. The Journal of Chemical Thermodynamics, 2018, 117: 214-222. |
163 | DHOLABHAL P D, KALOGERAKIS Nicolas, BISHNOL P R. Evaluation of gas hydrate formation and deposition in condensate pipelines: pilot plant studies[J]. SPE Production & Facilities, 1993, 8(3): 185-190. |
164 | 陈玉川, 史博会, 李文庆, 等. 水合物浆液非牛顿特性与黏度模型研究进展[J]. 化工进展, 2019, 38(6): 2682-2696. |
1 | U.S. Energy Information Administration (EIA). International energy outlook 2021[R/OL]. [2022-06-08]. |
2 | 童晓光, 张光亚, 王兆明, 等. 全球油气资源潜力与分布[J]. 石油勘探与开发, 2018, 45(4): 727-736. |
TONG Xiaoguang, ZHANG Guangya, WANG Zhaoming, et al. Distribution and potential of global oil and gas resources[J]. Petroleum Exploration and Development, 2018, 45(4): 727-736. | |
3 | 邹才能, 翟光明, 张光亚, 等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1): 13-25. |
ZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25. | |
4 | SLOAN E Dendy, Carolyn A KOH, Amadeu K SUM, et al. Natural gas hydrates in flow assurance [M]. Oxford: Gulf Professional Publishing, 2010. |
5 | LI Huiyuan, ZHANG Jinjun, XU Qinggong, et al. Influence of asphaltene on wax deposition: deposition inhibition and sloughing[J]. Fuel, 2020, 266: 117047. |
6 | ALNAIMAT Fadi, ZIAUDDIN Mohammed. Wax deposition and prediction in petroleum pipelines[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106385. |
7 | RIEDEMAN James S, KADASALA Naveen Reddy, WEI Alexander, et al. Characterization of asphaltene deposits by using mass spectrometry and Raman spectroscopy[J]. Energy & Fuels, 2016, 30(2): 805-809. |
8 | OLIVEIRA Davi F, SANTOS Ramon S, MACHADO Alessandra S, et al. Characterization of scale deposition in oil pipelines through X-Ray Microfluorescence and X-Ray microtomography[J]. Applied Radiation and Isotopes, 2019, 151: 247-255. |
9 | LIU Zhiming, LI Yuxing, WANG Wuchang, et al. Wax and wax-hydrate deposition characteristics in single-, two-, and three-phase pipelines: A review[J]. Energy & Fuels, 2020, 34(11): 13350-13368. |
10 | 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 2版. 北京: 化学工业出版社, 2019: 1-249. |
164 | CHEN Yuchuan, SHI Bohui, LI Wenqing, et al. Progress of the non-Newtonian properties of hydrate slurry and viscosity model[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2682-2696. |
165 | YAN Kele, SUN Changyu, CHEN Jun, et al. Flow characteristics and rheological properties of natural gas hydrate slurry in the presence of anti-agglomerant in a flow loop apparatus[J]. Chemical Engineering Science, 2014, 106: 99-108. |
166 | WEBB Eric B, Carolyn A KOH, LIBERATORE Matthew W. Rheological properties of methane hydrate slurries formed from AOT+ water+ oil microemulsions[J]. Langmuir, 2013, 29(35): 10997-11004. |
167 | WEBB Eric B, Carolyn A KOH, LIBERATORE Matthew W. High pressure rheology of hydrate slurries formed from water-in-mineral oil emulsions[J]. Industrial & Engineering Chemistry Research, 2014, 53(17): 6998-7007. |
168 | WEBB Eric B, RENSING Patrick J, Carolyn A KOH, et al. High-pressure rheology of hydrate slurries formed from water-in-oil emulsions[J]. Energy & Fuels, 2012, 26(6): 3504-3509. |
169 | QIN Yahua, AMAN Zachary M, PICKERING Paul F, et al. High pressure rheological measurements of gas hydrate-in-oil slurries[J]. Journal of Non-Newtonian Fluid Mechanics, 2017, 248: 40-49. |
170 | 李文庆. 多相体系水合物浆液管流规律实验研究[D]. 北京: 中国石油大学(北京), 2012. |
LI Wenqing. Experimental study on multiphase flow mechanism of hydrate slurry in pipes[D]. Beijing: China University of Petroleum(Beijing), 2012. | |
171 | SHEN Xiaodong, HOU Guodong, DING Jiaxiang, et al. Flow characteristics of methane hydrate slurry in the transition region in a high-pressure flow loop[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 64-73. |
172 | BALAKIN Boris V, Simon LO, KOSINSKI Pawel, et al. Modelling agglomeration and deposition of gas hydrates in industrial pipelines with combined CFD-PBM technique[J]. Chemical Engineering Science, 2016, 153: 45-57. |
173 | SINQUIN A, PALERMO T, PEYSSON Y. Rheological and flow properties of gas hydrate suspensions[J]. Oil & Gas Science and Technology, 2004, 59(1): 41-57. |
174 | DIEKER L E, TAYLOR C J, KOH C, et al. Micromechanical adhesion force measurements between cyclopentane hydrate particles[C]//6th International Conference on Gas Hydrates. Vancouver: University of British Columbia Library, 2008: 1-4. |
175 | MAJID Ahmad A A, WU David T, Carolyn A KOH. A perspective on rheological studies of gas hydrate slurry properties[J]. Engineering, 2018, 4(3): 321-329. |
176 | MAJID Ahmad A A, WU David T, Carolyn A KOH. New in situ measurements of the viscosity of gas clathrate hydrate slurries formed from model water-in-oil emulsions[J]. Langmuir, 2017, 33(42): 11436-11445. |
177 | SHI Bohui, CHAI Shuai, WANG Linyan, et al. Viscosity investigation of natural gas hydrate slurries with anti-agglomerants additives[J]. Fuel, 2016, 185: 323-338. |
178 | SANTAMARı´A-HOLEK I, MENDOZA Carlos I. The rheology of concentrated suspensions of arbitrarily-shaped particles[J]. Journal of Colloid and Interface Science, 2010, 346(1): 118-126. |
179 | QIN Yahua, PICKERING Paul F, JOHNS Michael L, et al. Rheological method to describe metastable hydrate-in-oil slurries[J]. Energy & Fuels, 2020, 34(7): 7955-7964. |
180 | AKHFASH Masoumeh, AMAN Zachary M, Sang Yoon AHN, et al. Gas hydrate plug formation in partially-dispersed water-oil systems[J]. Chemical Engineering Science, 2016, 140: 337-347. |
181 | BALAKIN B V, PEDERSEN H, KILINC Z, et al. Turbulent flow of Freon R11 hydrate slurry[J]. Journal of Petroleum Science and Engineering, 2010, 70(3/4): 177-182. |
182 | LIU Yang, SHI Bohui, DING Lin, et al. Study of hydrate formation in water-in-waxy oil emulsions considering heat transfer and mass transfer[J]. Fuel, 2019, 244: 282-295. |
183 | LIU Zheyuan, VASHEGHANI FARAHANI Mehrdad, YANG Mingjun, et al. Hydrate slurry flow characteristics influenced by formation, agglomeration and deposition in a fully visual flow loop[J]. Fuel, 2020, 277: 118066. |
184 | 史博会, 宋素合, 易成高, 等. 水合物流动环路实验研究进展[J]. 化工进展, 2018, 37(4): 1347-1363. |
SHI Bohui, SONG Suhe, YI Chenggao, et al. Experimental research progress on hydrate flow loops[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1347-1363. | |
185 | SUN Zhongwang, SHI Kangji, GUAN Dawei, et al. Current flow loop equipment and research in hydrate-associated flow assurance[J]. Journal of Natural Gas Science and Engineering, 2021, 96: 104276. |
186 | 姚海元, 李清平, 陈光进, 等. 加入防聚剂后水合物浆液流动压降规律研究[J]. 化学工程, 2009, 37(12): 20-23. |
10 | CHEN Guangjin, SUN Changyu, MA Qinglan. Gas hydrate science and technology[M]. 2nd ed. Beijing: Chemical Industry Press, 2019: 1-249. |
11 | SLOAN E Dendy, Carolyn A KOH. Clathrate Hydrates of natural gases[M]. New York: CRC Press, 2007. |
12 | Yining LYU, SUN Changyu, LIU Bei, et al. A water droplet size distribution dependent modeling of hydrate formation in water/oil emulsion[J]. AIChE Journal, 2017, 63(3): 1010-1023. |
13 | TURNER Douglas J, MILLER Kelly T, SLOAN E Dendy. Methane hydrate formation and an inward growing shell model in water-in-oil dispersions[J]. Chemical Engineering Science, 2009, 64(18): 3996-4004. |
14 | AMAN Zachary M, Carolyn A KOH. Interfacial phenomena in gas hydrate systems[J]. Chemical Society Reviews, 2016, 45(6): 1678-1690. |
15 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Investigation of hydrate plugging in natural gas+diesel oil+water systems using a high-pressure flow loop[J]. Chemical Engineering Science, 2017, 158: 480-489. |
16 | ZERPA Luis E, SLOAN E Dendy, Amadeu K SUM, et al. Overview of CSMHyK: a transient hydrate formation model[J]. Journal of Petroleum Science and Engineering, 2012, 98/99: 122-129. |
17 | 柳扬, 史博会, 吕晓方, 等. 油基水基及部分分散体系水合物堵管机理[J]. 科学通报, 2017, 62(13): 1365-1376. |
LIU Yang, SHI Bohui, Xiaofang LYU, et al. Hydrate plugging mechanisms of oil-dominated, water-dominated and partially dispersed system[J]. Chinese Science Bulletin, 2017, 62(13): 1365-1376. | |
18 | TURNER Douglas J. Clathrate hydrate formation in water-in-oil dispersions[D]. Golden: Colorado School of Mines, 2005. |
19 | HASSANPOURYOUZBAND Aliakbar, JOONAKI Edris, VASHEGHANI FARAHANI Mehrdad, et al. Gas hydrates in sustainable chemistry[J]. Chemical Society Reviews, 2020, 49(15): 5225-5309. |
20 | PERRIN Andrea, MUSA Osama M, STEED Jonathan W. The chemistry of low dosage clathrate hydrate inhibitors[J]. Chemical Society Reviews, 2013, 42(5): 1996-2015. |
186 | YAO Haiyuan, LI Qingping, CHEN Guangjin, et al. Experimental study of pressure drop in hydrate slurry flow by adding anti-agglomerant[J]. Chemical Engineering (China), 2009, 37(12): 20-23. |
187 | CHEN Yuchuan, GONG Jing, SHI Bohui, et al. Investigation into methane hydrate reformation in water-dominated bubbly flow[J]. Fuel, 2020, 263: 116691. |
188 | FU Weiqi, YU Jing, XIAO Yang, et al. A pressure drop prediction model for hydrate slurry based on energy dissipation under turbulent flow condition[J]. Fuel, 2022, 311: 122188. |
189 | SHI X J, ZHANG P. Conjugated heat and mass transfer during flow melting of a phase change material slurry in pipes[J]. Energy, 2016, 99: 58-68. |
190 | SHI X J, ZHANG P. Two-phase flow and heat transfer characteristics of tetra-n-butyl ammonium bromide clathrate hydrate slurry in horizontal 90° elbow pipe and U-pipe[J]. International Journal of Heat and Mass Transfer, 2016, 97: 364-378. |
191 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Numerical simulation of hydrate slurry flow behavior in oil-water systems based on hydrate agglomeration modelling[J]. Journal of Petroleum Science and Engineering, 2018, 169: 393-404. |
192 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Numerical simulation of pipeline hydrate particle agglomeration based on population balance theory[J]. Journal of Natural Gas Science and Engineering, 2018, 51: 251-261. |
193 | SHI Bohui, LIU Yang, DING Lin, et al. New simulator for gas-hydrate slurry stratified flow based on the hydrate kinetic growth model[J]. Journal of Energy Resources Technology, 2019, 141(1): 012906. |
194 | SHI Guoyun, SONG Shangfei, SHI Bohui, et al. A new transient model for hydrate slurry flow in oil-dominated flowlines[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108003. |
195 | DAVIES Simon R, BOXALL John A, DIEKER Laura E, et al. Predicting hydrate plug formation in oil-dominated flowlines[J]. Journal of Petroleum Science and Engineering, 2010, 72(3/4): 302-309. |
196 | WANG Yan, Carolyn A KOH, Alejandro DAPENA J, et al. A transient simulation model to predict hydrate formation rate in both oil-and water-dominated systems in pipelines[J]. Journal of Natural Gas Science and Engineering, 2018, 58: 126-134. |
197 | CHAUDHARI Piyush, ZERPA Luis E, Amadeu K SUM. A correlation to quantify hydrate plugging risk in oil and gas production pipelines based on hydrate transportability parameters[J]. Journal of Natural Gas Science and Engineering, 2018, 58: 152-161. |
198 | WANG Yan, Carolyn A KOH, WHITE Jake, et al. Hydrate formation management simulations with anti-agglomerants and thermodynamic inhibitors in a subsea tieback[J]. Fuel, 2019, 252: 458-468. |
21 | SLOAN E Dendy. A changing hydrate paradigm-from apprehension to avoidance to risk management[J]. Fluid Phase Equilibria, 2005, 228/229: 67-74. |
22 | 宋光春, 李玉星, 王武昌, 等. 油气管道水合物堵塞机理研究进展[J]. 化工进展, 2018, 37(7): 2473-2481. |
SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Review of hydrate plugging mechanisms in oil and gas transport pipelines[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2473-2481. | |
23 | 王成, 刘妮, 孟斐. 油水体系水合物生成与堵塞机理研究进展[J]. 石油化工, 2021, 50(5): 496-504. |
WANG Cheng, LIU Ni, MENG Fei. Research progress on formation and plugging mechanism of hydrate in oil-water system[J]. Petrochemical Technology, 2021, 50(5): 496-504. | |
24 | RIPMEESTER John A, ALAVI Saman. Some Current challenges in clathrate hydrate science: nucleation, decomposition and the memory effect[J]. Current Opinion in Solid State and Materials Science, 2016, 20(6): 344-351. |
25 | ADAMOVA Tatyana P, STOPOREV Andrey S, MANAKOV Andrey Yu. Visual studies of methane hydrate formation on the water-oil boundaries [J]. Crystal Growth & Design, 2018, 18(11): 6713-6722. |
26 | STOPOREV Andrey S, SEMENOV Anton P, MEDVEDEV Vladimir I, et al. Visual observation of gas hydrates nucleation and growth at a water-organic liquid interface[J]. Journal of Crystal Growth, 2018, 485: 54-68. |
27 | Amadeu K SUM, Carolyn A KOH, SLOAN E Dendy. Developing a comprehensive understanding and model of hydrate in multiphase flow: from laboratory measurements to field applications[J]. Energy & Fuels, 2012, 26(7): 4046-4052. |
28 | NICHOLAS Joseph W, DIEKER Laura E, SLOAN E Dendy, et al. Assessing the feasibility of hydrate deposition on pipeline walls-adhesion force measurements of clathrate hydrate particles on carbon steel[J]. Journal of Colloid and Interface Science, 2009, 331(2): 322-328. |
29 | MU Liang, LI Shi, MA Qinglan, et al. Experimental and modeling investigation of kinetics of methane gas hydrate formation in water-in-oil emulsion[J]. Fluid Phase Equilibria, 2014, 362: 28-34. |
30 | LI Shengli, WANG Yunfei, SUN Changyu, et al. Factors controlling hydrate film growth at water/oil interfaces[J]. Chemical Engineering Science, 2015, 135: 412-420. |
199 | Simon LO. CFD modelling of hydrate formation in oil-dominated flows[C]. Offshore Technology Conference, Houston, Texas: OTC, 2011. |
200 | BALAKIN Boris V, HOFFMANN Alex C, KOSINSKI Pawel. Population balance model for nucleation, growth, aggregation, and breakage of hydrate particles in turbulent flow[J]. AIChE Journal, 2010, 56(8): 2052-2062. |
201 | BALAKIN B V, HOFFMANN A C, KOSINSKI P. Experimental study and computational fluid dynamics modeling of deposition of hydrate particles in a pipeline with turbulent water flow[J]. Chemical Engineering Science, 2011, 66(4): 755-765. |
202 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Numerical simulation of hydrate particle size distribution and hydrate particle bedding in pipeline flowing systems[J]. Journal of Dispersion Science and Technology, 2020, 41(7): 1051-1064. |
203 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Hydrate agglomeration modeling and pipeline hydrate slurry flow behavior simulation[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 32-43. |
204 | BALAKIN Boris V, HOFFMANN Alex C, KOSINSKI Pawel. Coupling STAR-CD with a population-balance technique based on the classes method[J]. Powder Technology, 2014, 257: 47-54. |
205 | BALAKIN Boris V, KUTSENKO Kirill V, LAVRUKHIN Alexey A, et al. The collision efficiency of liquid bridge agglomeration[J]. Chemical Engineering Science, 2015, 137: 590-600. |
206 | LIU Jia, NING Min, DONG Ti, et al. Numerical study on flow characteristics of hydrate slurry liquid-solid two-phase flow considering the adhesion between particles[J]. Journal of Natural Gas Science and Engineering, 2022, 99: 104410. |
207 | 宋光春, 李玉星, 王武昌, 等. 基于群体平衡理论的管内水合物浆流动特性数值模拟[J]. 化工进展, 2018, 37(2): 561-568. |
SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Numerical simulation of pipeline hydrate slurry flow behavior based on population balance theory[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 561-568. | |
208 | 宋光春, 李玉星, 王武昌, 等. 基于群体平衡理论的水合物聚集动力学模型[J]. 化工进展, 2018, 37(1): 80-87. |
SONG Guangchun, LI Yuxing, WANG Wuchang, et al. A research on the dynamic model of hydrate agglomeration based on population balance theory[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 80-87. | |
31 | 宋光春, 李玉星, 王武昌, 等. 油气输送管线水合物沉积研究进展[J]. 化工进展, 2017, 36(9): 3164-3176. |
SONG Guangchun, LI Yuxing, WANG Wuchang, et al. A review on hydrate deposition in oil and gas transmission pipelines[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3164-3176. | |
32 | GRASSO Giovanny A. Investigation of hydrate formation and transportability in mutiphase flow systems[D]. Golden: Colorado School of Mines, 2015. |
33 | NICHOLAS Joseph W, Carolyn A KOH, SLOAN E Dendy, et al. Measuring hydrate/ice deposition in a flow loop from dissolved water in live liquid condensate[J]. AIChE Journal, 2009, 55(7): 1882-1888. |
34 | NICHOLAS Joseph W. Hydrate deposition in water saturated liquid condensate pipelines[D]. Golden: Colorado School of Mines, 2008. |
35 | NICHOLAS Joseph W, DIEKER Laura E, NUEBLING Lee, et al. Experimental investigation of deposition and wall growth in water saturated hydrocarbon pipelines in the absence of free water[C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver: University of British Columbia Library, 2008. |
36 | ZHANG Dongxu, HUANG Qiyu, LI Rongbin, et al. Nucleation and growth of gas hydrates in emulsions of water in asphaltene-containing oils[J]. Energy & Fuels, 2021, 35(7): 5853-5866. |
37 | ZHANG Dongxu, HUANG Qiyu, ZHENG Haimin, et al. Effect of wax crystals on nucleation during gas hydrate formation[J]. Energy & Fuels, 2019, 33(6): 5081-5090. |
38 | Xiaofang LYU, SHI Bohui, ZHOU Shidong, et al. Study on the growth rate of natural gas hydrate in water-in-oil emulsion system using a high-pressure flow loop[J]. RSC Advances, 2018, 8(64): 36484-36492. |
39 | VYSNIAUSKAS A, BISHNOI P R. A kinetic study of methane hydrate formation[J]. Chemical Engineering Science, 1983, 38(7): 1061-1072. |
40 | VYSNIAUSKAS A, BISHNOI P R. Kinetics of ethane hydrate formation[J]. Chemical Engineering Science, 1985, 40(2): 299-303. |
41 | 宋光春, 施政灼, 李玉星, 等. 油水体系内水合物的生成:温度、压力和搅拌速率影响[J]. 化工进展, 2019, 38(3): 1338-1345. |
SONG Guangchun, SHI Zhengzhuo, LI Yuxing, et al. Hydrate formation in oil-water systems: Investigations of the influences of temperature, pressure and rotation rate[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1338-1345. | |
42 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Experimental study of hydrate formation in oil-water systems using a high-pressure visual autoclave[J]. AIChE Journal, 2019, 65(9): 16667. |
43 | SHI Bohui, CHAI Shuai, DING Lin, et al. An investigation on gas hydrate formation and slurry viscosity in the presence of wax crystals[J]. AIChE Journal, 2018, 64(9): 3502-3518. |
44 | LIU Zaixing, SONG Yongchen, LIU Weiguo, et al. Formation of methane hydrate in oil-water emulsion governed by the hydrophilic and hydrophobic properties of non-ionic surfactants[J]. Energy & Fuels, 2019, 33(6): 5777-5784. |
45 | ZI Mucong, WU Guozhong, WANG Jiang, et al. Investigation of gas hydrate formation and inhibition in oil-water system containing model asphaltene[J]. Chemical Engineering Journal, 2021, 412: 128452. |
46 | ZI Mucong, CHEN Daoyi, WANG Jiang, et al. Kinetic and rheological study of methane hydrate formation in water-in-oil emulsion: effects of emulsion composition and silica sands[J]. Fuel, 2019, 255: 115708. |
47 | MOHAMMADI A H, JI H, BURGASS R W, et al. Gas hydrates in oil systems[C]//SPE Europec/EAGE Annual Conference and Exhibition. Vienna: SPE, 2006. |
48 | RAMAN Ashwin Kumar Yegya, AICHELE Clint P. Effect of particle hydrophobicity on hydrate formation in water-in-oil emulsions in the presence of wax[J]. Energy & Fuels, 2017, 31(5): 4817-4825. |
49 | YEGYA RAMAN Ashwin Kumar, KOTEESWARAN Samyukta, VENKATARAMANI Deepika, et al. A comparison of the rheological behavior of hydrate forming emulsions stabilized using either solid particles or a surfactant[J]. Fuel, 2016, 179: 141-149. |
50 | WANG Wei, HUANG Qiyu, ZHENG Haimin, et al. Effect of wax on hydrate formation in water-in-oil emulsions[J]. Journal of Dispersion Science and Technology, 2020, 41(12): 1821-1830. |
51 | ZHENG Haimin, HUANG Qiyu, WANG Wei, et al. Induction time of hydrate formation in water-in-oil emulsions[J]. Industrial & Engineering Chemistry Research, 2017, 56(29): 8330-8339. |
52 | CHEN Yuchuan, SHI Bohui, LIU Yang, et al. Experimental and theoretical investigation of the interaction between hydrate formation and wax precipitation in water-in-oil emulsions[J]. Energy & Fuels, 2018, 32(9): 9081-9092. |
53 | 史博会, 雍宇, 柳杨, 等. 含蜡和防聚剂体系天然气水合物浆液生成及流动特性[J]. 化工进展, 2018, 37(6): 2182-2191. |
SHI Bohui, YONG Yu, LIU Yang, et al. Characteristics of natural gas hydrate slurry formation and flow in systems with wax and anti-agglomerates[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2182-2191. | |
54 | XUE Huiyong, ZHANG Jinjun, HAN Shanpeng, et al. Effect of asphaltenes on the structure and surface properties of wax crystals in waxy oils[J]. Energy & Fuels, 2019, 33(10): 9570-9584. |
55 | MCLEAN Joseph D, KILPATRICK Peter K. Effects of asphaltene aggregation in model heptane-toluene mixtures on stability of water-in-oil emulsions[J]. Journal of Colloid and Interface Science, 1997, 196(1): 23-34. |
56 | NING Yuanxing, LI Yuxing, SONG Guangchun, et al. Investigation on hydrate formation and growth characteristics in dissolved asphaltene-containing water-in-oil emulsion[J]. Langmuir, 2021, 37(37): 11072-11083. |
57 | CHENG Xianwen, HUANG Qiyu, ZHANG Dongxu, et al. Influence of asphaltene polarity on hydrate behaviors in water-in-oil emulsions[J]. Energy & Fuels, 2022, 36(1): 239-250. |
58 | ZHANG Dongxu, HUANG Qiyu, WANG Wei, et al. Effects of waxes and asphaltenes on CO2 hydrate nucleation and decomposition in oil-dominated systems[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103799. |
59 | DARABOINA Nagu, PACHITSAS Stylianos, VON SOLMS Nicolas. Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems[J]. Fuel, 2015, 148: 186-190. |
60 | SONG Rencong, SHANG Liyan, LI Ping, et al. Application of hydrophobic particles in the formation kinetics of methane hydrate in water-in-oil emulsion[J]. Petroleum Science and Technology, 2020, 38(4): 391-397. |
61 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Hydrate formation in oil-water systems: Investigations of the influences of water cut and anti-agglomerant[J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 369-377. |
62 | WANG Zhe, MA Guiyang, SHANG Liyan, et al. Effect of a nonionic surfactant on the formation of natural gas hydrate in a diesel emulsion system[J]. Petroleum Science and Technology, 2018, 36(23): 2017-2023. |
63 | ZEMENKOV Yu D, SHIRSHOVA A V, ARINSTEIN E A, et al. Influence of surfactants on gas-hydrate formation kinetics in water-oil emulsion[C]//IOP Conference Series: Materials Science and Engineering. Tyumen: IOP, 2018, 357: 012025. |
64 | YI Lizhi, ZHAO Lili, TAO Shunhui. Methane hydrate formation in an oil-water system in the presence of lauroylamide propylbetaine[J]. RSC Advances, 2020, 10(21): 12255-12261. |
65 | SHI Lingli, HE Yong, LU Jingsheng, et al. Effect of dodecyl dimethyl benzyl ammonium chloride on CH4 hydrate growth and agglomeration in oil-water systems[J]. Energy, 2020, 212: 118746. |
66 | DELROISSE Henry, Jean-Philippe TORRÉ, DICHARRY Christophe. Effects of a quaternary ammonium salt on the growth, wettability, and agglomeration of structure II hydrate crystals[J]. Energy & Fuels, 2018, 32(12): 12277-12288. |
67 | DELROISSE Henry, Jean-Philippe TORRÉ, DICHARRY Christophe. Effect of a hydrophilic cationic surfactant on cyclopentane hydrate crystal growth at the water/cyclopentane interface[J]. Crystal Growth & Design, 2017, 17(10): 5098-5107. |
68 | DONG Sanbao, LIU Chenwei, HAN Weiwei, et al. The effect of the hydrate antiagglomerant on hydrate crystallization at the oil-water interface[J]. ACS Omega, 2020, 5(7): 3315-3321. |
69 | NING Fulong, GUO Dongdong, DIN Shahab Ud, et al. The kinetic effects of hydrate anti-agglomerants/surfactants[J]. Fuel, 2022, 318: 123566. |
70 | Tai BUI, SICARD Francois, MONTEIRO Deepak, et al. Antiagglomerants affect gas hydrate growth[J]. The Journal of Physical Chemistry Letters, 2018, 9(12): 3491-3496. |
71 | 吕晓方, 胡善炜, 于达, 等. 基于在线颗粒分析仪的水合物生成特性实验研究[J]. 实验技术与管理, 2014, 31(11): 84-88. |
Xiaofang LYU, HU Shanwei, YU Da, et al. Experimental study of hydrate formation characteristics based on FBRM[J]. Experimental Technology and Management, 2014, 31(11): 84-88. | |
72 | LIU Yang, SHI Bohui, DING Lin, et al. Investigation of hydrate agglomeration and plugging mechanism in low-wax-content water-in-oil emulsion systems[J]. Energy & Fuels, 2018, 32(9): 8986-9000. |
73 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Experimental investigation on the microprocess of hydrate particle agglomeration using a high-speed camera[J]. Fuel, 2019, 237: 475-485. |
74 | COLOMBEL E, GATEAU P, BARRÉ L, et al. Discussion of agglomeration mechanisms between hydrate particles in water in oil emulsions[J]. Oil & Gas Science and Technology-Rev. IFP, 2009, 64(5): 629-636. |
75 | STONER Hannah M, Carolyn A KOH. Perspective on the role of particle size measurements in gas hydrate agglomeration predictions[J]. Fuel, 2021, 304: 121385. |
76 | DING Lin, SHI Bohui, LIU Yang, et al. Rheology of natural gas hydrate slurry: effect of hydrate agglomeration and deposition[J]. Fuel, 2019, 239: 126-137. |
77 | CAMARGO Ricardo, PALERMO Thierry. Rheological properties of hydrate suspensions in an asphaltenic crude oil[C]//Yokohama: 4th International Conference on Gas Hydrates, 2002: 880-885. |
78 | PALERMO T, FIDEL-DUFOUR A, MAUREL P, et al. Model of hydrates agglomeration-application to hydrates formation in an acidic crude oil[C]//12th International Conference on Multiphase Production Technology. Barcelona: BHR Group, 2005. |
79 | PAUCHARD V, DARBOURET M, PALERMO T, et al. Gas hydrate slurry flow in a black oil. Prediction of gas hydrate particles agglomeration and linear pressure drop[C]//13th International Conference on Multiphase Production Technology. Edinburgh: BHR Group, 2007. |
80 | AMAN Zachary M, BROWN Erika P, SLOAN E Dendy, et al. Interfacial mechanisms governing cyclopentane clathrate hydrate adhesion/cohesion[J]. Physical Chemistry Chemical Physics, 2011, 13(44): 19796-19806. |
81 | ZERPA Luis E, SALAGER Jean Louis, Carolyn A KOH, et al. Surface chemistry and gas hydrates in flow assurance[J]. Industrial & Engineering Chemistry Research, 2011, 50(1): 188-197. |
82 | AMAN Zachary M, JOSHI Sanjeev E, SLOAN E Dendy, et al. Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties[J]. Journal of Colloid and Interface Science, 2012, 376(1): 283-288. |
83 | HU Sijia, Carolyn A KOH. Interfacial properties and mechanisms dominating gas hydrate cohesion and adhesion in liquid and vapor hydrocarbon phases[J]. Langmuir, 2017, 33(42): 11299-11309. |
84 | BROWN Erika P, Carolyn A KOH. Micromechanical measurements of the effect of surfactants on cyclopentane hydrate shell properties[J]. Physical Chemistry Chemical Physics, 2016, 18(1): 594-600. |
85 | WANG Wuchang, LI Yuxing, LIU Haihong, et al. Study of agglomeration characteristics of hydrate particles in oil/gas pipelines[J]. Advances in Mechanical Engineering, 2015, 7(2). |
86 | LIU Chenwei, LI Yuxing, WANG Weiyang, et al. Modeling the micromechanical interactions between clathrate hydrate particles and water droplets with reducing liquid volume[J]. Chemical Engineering Science, 2017, 163: 44-55. |
87 | TAYLOR Craig J. Adhesion force between hydrate particles and macroscopic investigation of hydrate film growth at the hydrocarbon/water interface[D]. Golden: Colorado School of Mines, 2006. |
88 | LIU Chenwei, ZHANG Chongrui, ZHOU Chenru, et al. Effects of the solidification of capillary bridges on the interaction forces between hydrate particles[J]. Energy & Fuels, 2020, 34(4): 4525-4533. |
89 | AMAN Zachary M. Interfacial phenomena of cyclopentane hydrate[D]. Golden: Colorado School of Mines, 2012. |
90 | Johan SJÖBLOM, Bodhild ØVREVOLL, JENTOFT GunnHeidi, et al. Investigation of the hydrate plugging and non-plugging properties of oils[J]. Journal of Dispersion Science and Technology, 2010, 31(8): 1100-1119. |
91 | Annie FIDEL-DUFOUR, GRUY Frédéric, HERRI Jean Michel. Rheology of methane hydrate slurries during their crystallization in a water in dodecane emulsion under flowing[J]. Chemical Engineering Science, 2006, 61(2): 505-515. |
92 | WANG Shenglong, FAN Shuanshi, LANG Xuemei, et al. Particle size dependence of clathrate hydrate particle cohesion in liquid/gaseous hydrocarbons[J]. Fuel, 2020, 259: 116201. |
93 | PALERMO T, ARLA D, BORREGALES M, et al. Study of the agglomeration between hydrate particles in oil using differential scanning calorimetry (DSC)[C]//5th International Conference on Gas Hydrates. Torndheim: Tapir Academic Press, 2005: 332-339. |
94 | LIU Chenwei, LI Mingzhong, LIU Chunting, et al. Micromechanical interactions between clathrate hydrate particles and water droplets: experiment and modeling[J]. Energy & Fuels, 2016, 30(8): 6240-6248. |
95 | LIU Chenwei, LI Mingzhong, ZHANG Guodong, et al. Direct measurements of the interactions between clathrate hydrate particles and water droplets[J]. Physical Chemistry Chemical Physics, 2015, 17(30): 20021-20029. |
96 | DAVIES Simon R, SLOAN E Dendy, Amadeu K SUM, et al. In situ studies of the mass transfer mechanism across a methane hydrate film using high-resolution confocal Raman spectroscopy[J]. The Journal of Physical Chemistry C, 2010, 114(2): 1173-1180. |
97 | HU Sijia, Loan VO, MONTEIRO Deepak, et al. Structural effects of gas hydrate antiagglomerant molecules on interfacial interparticle force interactions[J]. Langmuir, 2021, 37(5): 1651-1661. |
98 | WANG Wuchang, WANG Xiaoyu, LI Yuxing, et al. Study on crystal growth and aggregated microstructure of natural gas hydrate under flow conditions[J]. Energy, 2020, 213: 118999. |
99 | DIEKER Laura E, AMAN Zachary M, GEORGE Nathan C, et al. Micromechanical adhesion force measurements between hydrate particles in hydrocarbon oils and their modifications[J]. Energy & Fuels, 2009, 23(12): 5966-5971. |
100 | AMAN Zachary M, DIEKER Laura E, ASPENES Guro, et al. Influence of model oil with surfactants and amphiphilic polymers on cyclopentane hydrate adhesion forces[J]. Energy & Fuels, 2010, 24(10): 5441-5445. |
101 | NAULLAGE Pavithra M, BERTOLAZZO Andressa A, MOLINERO Valeria. How do surfactants control the agglomeration of clathrate hydrates?[J]. ACS Central Science, 2019, 5(3): 428-439. |
102 | LI Mingzhong, DONG Sanbao, LI Bofeng, et al. Effects of a naturally derived surfactant on hydrate anti-agglomeration using micromechanical force measurement[J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 140-147. |
103 | HU Sijia, Carolyn A KOH. CH4/C2H6 gas hydrate interparticle interactions in the presence of anti-agglomerants and salinity[J]. Fuel, 2020, 269: 117208. |
104 | BROWN Erika P, TURNER Doug, GRASSO Giovanni, et al. Effect of wax/anti-agglomerant interactions on hydrate depositing systems[J]. Fuel, 2020, 264: 116573. |
105 | WANG Wei, HUANG Qiyu, HU Sijia, et al. Influence of wax on cyclopentane clathrate hydrate cohesive forces and interfacial properties[J]. Energy & Fuels, 2020, 34(2): 1482-1491. |
106 | ASPENES G, DIEKER L E, AMAN Z M, et al. Adhesion force between cyclopentane hydrates and solid surface materials[J]. Journal of Colloid and Interface Science, 2010, 343(2): 529-536. |
107 | AMAN Zachary M, LEITH William J, GRASSO Giovanny A, et al. Adhesion force between cyclopentane hydrate and mineral surfaces[J]. Langmuir, 2013, 29(50): 15551-15557. |
108 | LIU Chenwei, WANG Zhiyuan, TIAN Jinlin, et al. Fundamental investigation of the adhesion strength between cyclopentane hydrate deposition and solid surface materials[J]. Chemical Engineering Science, 2020, 217: 115524. |
109 | AMAN Zachary M, ZERPA Luis E, Carolyn A KOH, et al. Development of a tool to assess hydrate-plug-formation risk in oil-dominant pipelines[J]. SPE Journal, 2015, 20(4): 884-892. |
110 | DING Lin, SHI Bohui, LV Xiaofang, et al. Investigation of natural gas hydrate slurry flow properties and flow patterns using a high pressure flow loop[J]. Chemical Engineering Science, 2016, 146: 199-206. |
111 | PEYSSON Yannick, NULAND Sven, MAUREL Philippe, et al. Flow of hydrates dispersed in production lines[C]//SPE Annual Technical Conference and Exhibition. Denver: SPE, 2003. |
112 | HERNANDEZ O C. Investigation of hydrate slurry flow in horizontal pipelines[D]. Tulsa: University of Tulsa, 2006. |
113 | 吕晓方, 王莹, 李文庆, 等. 天然气油基水合物浆液流动实验[J]. 天然气工业, 2014, 34(11): 108-114. |
Xiaofang LYU, WANG Ying, LI Wenqing, et al. An experimental study of the hydrate blockage in the oil-dominated flow system[J]. Natural Gas Industry, 2014, 34(11): 108-114. | |
114 | 吕晓方. 高压多相体系水合物浆液生成/分解及流动规律研究[D]. 北京: 中国石油大学(北京), 2015. |
Xiaofang LYU. Study on the hydrate slurry formation/decomposition and multiphase flow in high-pressure multiphase system[D]. Beijing: China University of Petroleum (Beijing), 2015. | |
115 | GRASSO G A, SLOAN E Dendy, KOH C A, et al. Hydrate deposition mechanisms on pipe walls[C]. Houston: Offshore Technology Conference, 2014. |
116 | DING Lin, SHI Bohui, WANG Jiaqi, et al. Hydrate deposition on cold pipe walls in water-in-oil (W/O) emulsion systems[J]. Energy & Fuels, 2017, 31(9): 8865-8876. |
117 | AMAN Zachary M, LORENZO Mauricio Di, KOZIELSKI Karen, et al. Hydrate formation and deposition in a gas-dominant flowloop: initial studies of the effect of velocity and subcooling[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 1490-1498. |
118 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Investigation on the mechanical properties and mechanical stabilities of pipewall hydrate deposition by modelling and numerical simulation[J]. Chemical Engineering Science, 2018, 192: 477-487. |
119 | SHI Bohui, DING Lin, LIU Yang, et al. Hydrate slurry flow property in W/O emulsion systems[J]. RSC Advances, 2018, 8(21): 11436-11445. |
120 | 王武昌, 陈鹏, 李玉星, 等. 天然气水合物浆在管道中的流动沉积特性[J]. 天然气工业, 2014, 34(2): 99-104. |
WANG Wuchang, CHEN Peng, LI Yuxing, et al. Flow and deposition characteristics of natural gas hydrate in pipelines[J]. Natural Gas Industry, 2014, 34(2): 99-104. | |
121 | LIU Zheyuan, CHEN Bingbing, LANG Chen, et al. An improved model for predicting the critical velocity in the removal of hydrate particles from solid surfaces[J]. Chemical Physics Letters, 2021, 779: 138832. |
122 | BELLUCCI Michael A, WALSH Matthew R, TROUT Bernhardt L. Molecular dynamics analysis of anti-agglomerant surface adsorption in natural gas hydrates[J]. The Journal of Physical Chemistry C, 2018, 122(5): 2673-2683. |
123 | XU Jiafang, DU Shuai, HAO Yongchao, et al. Molecular simulation study of methane hydrate formation mechanism in NaCl solutions with different concentrations[J]. Chemical Physics, 2021, 551: 111323. |
124 | YAGASAKI Takuma, MATSUMOTO Masakazu, TANAKA Hideki. Adsorption mechanism of inhibitor and guest molecules on the surface of gas hydrates[J]. Journal of the American Chemical Society, 2015, 137(37): 12079-12085. |
125 | XU Ping, LANG Xuemei, FAN Shuanshi, et al. Molecular dynamics simulation of methane hydrate growth in the presence of the natural product pectin[J]. The Journal of Physical Chemistry C, 2016, 120(10): 5392-5397. |
126 | Florianne CASTILLO-BORJA, BRAVO-SÁNCHEZ Ulises I. Molecular Dynamics simulation study of the performance of different inhibitors for methane hydrate growth[J]. Journal of Molecular Liquids, 2021, 337: 116510. |
127 | MEHRABIAN Hadi, BELLUCCI Michael A, WALSH Matthew R, et al. Effect of salt on antiagglomerant surface adsorption in natural gas hydrates[J]. The Journal of Physical Chemistry C, 2018, 122(24): 12839-12849. |
128 | CHAPOY Antonin, MAZLOUM Saeid, BURGASS Rod, et al. Clathrate hydrate equilibria in mixed monoethylene glycol and electrolyte aqueous solutions[J]. The Journal of Chemical Thermodynamics, 2012, 48: 7-12. |
129 | KIM Hyunho, YOO Wonwo, Youngsub LIM, et al. Economic evaluation of MEG injection and regeneration process for oil FPSO[J]. Journal of Petroleum Science and Engineering, 2018, 164: 417-426. |
130 | DUAN Zhenhao, SUN Rui. A model to predict phase equilibrium of CH4 and CO2 clathrate hydrate in aqueous electrolyte solutions[J]. American Mineralogist, 2006, 91(8/9): 1346-1354. |
131 | HU Yue, LEE Bo Ram, Amadeu K SUM. Phase equilibrium data of methane hydrates in mixed brine solutions[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 750-755. |
132 | QASIM Ali, KHAN Muhammad Saad, Bhajan LAL, et al. Quaternary ammonium salts as thermodynamic hydrate inhibitors in the presence and absence of monoethylene glycol for methane hydrates[J]. Fuel, 2020, 259: 116219. |
133 | JIN Yusuke, KIDA Masato, KONNO Yoshihiro, et al. Clathrate hydrate equilibrium in methane-water systems with the addition of monosaccharide and sugar alcohol[J]. Journal of Chemical & Engineering Data, 2017, 62(1): 440-444. |
134 | BAVOH Cornelius B, PARTOON Behzad, Bhajan LAL, et al. Inhibition effect of amino acids on carbon dioxide hydrate[J]. Chemical Engineering Science, 2017, 171: 331-339. |
135 | BAVOH Cornelius B, PARTOON Behzad, Bhajan LAL, et al. Methane hydrate-liquid-vapour-equilibrium phase condition measurements in the presence of natural amino acids[J]. Journal of Natural Gas Science and Engineering, 2017, 37: 425-434. |
136 | YASUDA Keita, TAKEYA Satoshi, SAKASHITA Mami, et al. Binary ethanol-methane clathrate hydrate formation in the system CH4-C2H5OH-H2O: Confirmation of structure II hydrate formation[J]. The Journal of Physical Chemistry C, 2009, 113(28): 12598-12601. |
137 | KELLAND Malcolm A. History of the development of low dosage hydrate inhibitors[J]. Energy & Fuels, 2006, 20(3): 825-847. |
138 | DARABOINA Nagu, PACHITSAS Stylianos, VON SOLMS Nicolas. Experimental validation of kinetic inhibitor strength on natural gas hydrate nucleation[J]. Fuel, 2015, 139: 554-560. |
139 | KELLAND Malcolm A. Designing kinetic hydrate inhibitors—Eight projects with only partial success, but some lessons learnt[J]. Energy & Fuels, 2017, 31(5): 5046-5054. |
140 | Eduardo LUNA-ORTIZ, HEALEY Matt, ANDERSON Ross, et al. Crystal growth inhibition studies for the qualification of a kinetic hydrate inhibitor under flowing and shut-in conditions[J]. Energy & Fuels, 2014, 28(5): 2902-2913. |
141 | CHENG Liwei, LIAO Kai, LI Zhi, et al. The invalidation mechanism of kinetic hydrate inhibitors under high subcooling conditions[J]. Chemical Engineering Science, 2019, 207: 305-316. |
142 | TARIQ Mohammad, ROONEY David, OTHMAN Enas, et al. Gas hydrate inhibition: a review of the role of ionic liquids[J]. Industrial & Engineering Chemistry Research, 2014, 53(46): 17855-17868. |
143 | SHI Bohui, SONG Shangfei, CHEN Yuchuan, et al. Status of natural gas hydrate flow assurance research in China: a review[J]. Energy & Fuels, 2021, 35(5): 3611-3658. |
144 | Tai BUI, PHAN Anh, MONTEIRO Deepak, et al. Evidence of structure-performance relation for surfactants used as antiagglomerants for hydrate management[J]. Langmuir, 2017, 33(9): 2263-2274. |
145 | Felipe JIMÉNEZ-ÁNGELES, FIROOZABADI Abbas. Hydrophobic hydration and the effect of NaCl salt in the adsorption of hydrocarbons and surfactants on clathrate hydrates[J]. ACS Central Science, 2018, 4(7): 820-831. |
146 | FANG Bin, NING Fulong, HU Sijia, et al. The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study[J]. RSC Advances, 2020, 10(52): 31027-31038. |
147 | HUO Z, FREER E, LAMAR M, et al. Hydrate plug prevention by anti-agglomeration[J]. Chemical Engineering Science, 2001, 56(17): 4979-4991. |
148 | KULIEV A, RASULOV A, DASHDAMIROV F. Surfactants studies as hydrate-formation inhibitors[J]. Gazovoe Delo, 1972, 10: 17-19. |
149 | GRAINGER N, FEASEY N D, FEASEY N. Composition used as anti-agglomeration hydrate inhibitor for inhibiting formation of gas hydrate agglomeration in liquid during oil and gas exploration, recovery, or processing, comprises quaternary ammonium compound: WO2015015211-A1; GB2516862-A; CA2912507-A1; AU2014298215-A1; US2016186033-A1; AU2014298215-B2; BR112015029589-A2; CA2912507-C[P]. 2015. |
150 | ZANOTA Marie L, DICHARRY Christophe, GRACIAA Alain. Hydrate plug prevention by quaternary ammonium salts[J]. Energy & Fuels, 2005, 19(2): 584-590. |
151 | MUIJS H M, HEERS N C, VANOS N M, et al. Inhibition of hydrate formation in wet hydrocarbon streams: CA2036084-A; NO 9100619-A; EP457375-A; NZ237020-A; EP457375-B1; DE69100197-E; NO180783-B[P]. 1991. |
152 | FROSTMAN L M. Anti-agglomerant hydrate inhibitors for prevention of hydrate plugs in deepwater systems[C]//SPE Annual Technical Conference and Exhibition. Dallas: SPE, 2000. |
153 | FROSTMAN L M, THIEU V, CROSBY D L, et al. Low-dosage hydrate inhibitors (LDHIs): reducing costs in existing systems and designing for the future[C]//International symposium on oilfield chemistry. Houston: SPE, 2003. |
[1] | WANG Wei, ZHANG Dongxu, LI Zunzhao, WANG Xiaolin, HUANG Qiyu. Research progress on the growth behavior of hydrates in water-in-oil emulsion systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1155-1166. |
[2] | FU Weiqi, ZHAO Zixian, YU Jing, WEI Wei, WANG Zhiyuan, HUANG Bingxiang. Prediction model of hydrate formation in bubbly flow and experimental study [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5746-5754. |
[3] | Xianglong CHENG,Jinju GUO,Haiyong ZHANG,Jialiang SUN,Yanbing ZHANG,Chengjian SONG. Modeling of the entrained flow gasification reactor under the synergistic action of ligniteoxidation and steam gasification [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 119-128. |
[4] | Guangchun SONG,Zhengzhuo SHI,Yuxing LI,Wuchang WANG,Pengfei ZHAO,Kai JIANG,Shupeng YAO. Hydrate formation in oil-water systems: investigations of the influences of temperature, pressure and rotation rate [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1338-1345. |
[5] | Qijiang LIAO,Hongyun QIN,Mingliang ZHOU,Minqing ZHANG,Jinli ZHANG. Progress of researches and applications for high shear mixers [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1160-1175. |
[6] | CHEN Yuchuan, SHI Bohui, LI Wenqing, LIU Yang, SONG Shangfei, DING Lin, GONG Jing. Energy processes and technologyProgress of influence mechanism of kinetic hydrate inhibitors [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1726-1743. |
[7] | ZHANG Jianwei, ZHANG Zhigang, FENG Ying, SHI Bowen. Research progress of flow field characteristics in impinging stream reactor [J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3540-3548. |
[8] | ZHANG Zhongliang, LIU Yongqi, ZHENG Bin, LI Ruiyang, YU Hongling. Flow characteristics of particles in water-cooled screw conveyor [J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3217-3222. |
[9] | TANG Shaomeng, LIU Dejun, WEN Jiangbo. Advances in study on heavy oil-water flow [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2742-2747. |
[10] | HAO Chengming, LIU Dejun, LI Cunlei, LI Wenzhao. Analysis of hydrate formation in static AES solution and stirring with pure water [J]. Chemical Industry and Engineering Progress, 2017, 36(06): 2109-2114. |
[11] | YAN Kele, ZOU Bing, JIANG Suxia, ZHANG Hongxing, SHANG Zuzheng, WANG Qian. Review on flow characteristics and rheological properties of hydrate slurry [J]. Chemical Industry and Engineering Progree, 2015, 34(07): 1817-1825. |
[12] | WEI Dan, SONG Huaping, ZHAO Jun. Numerical simulation of interior flow field in new type pressure regulating valve [J]. Chemical Industry and Engineering Progree, 2015, 34(05): 1264-1268. |
[13] | WAN Yufei1,DENG Daoming1,LIU Xia2,ZENG Dechun2,LI Hongfu2,LI Liwan1,XUE Junzhao1. Thermo-hydraulic features of a diluted heavy crude pipeline [J]. Chemical Industry and Engineering Progree, 2014, 33(09): 2293-2297. |
[14] | LIU Hongpeng1,2,XIAO Jianbo2,LI Weiyi3,CHEN Guanyi1,WANG Qing2. Numerical simulation of flow characteristics in a 65t/h high-low bed CFB [J]. Chemical Industry and Engineering Progree, 2013, 32(02): 290-294. |
[15] | LI Jinxian1,WU Liping1,HAN Yinglong1,CHENG Buxue1,ZHAO Sizhen2,. Experimental research on the flow characteristics of combined swirl FCC feed injection nozzle [J]. Chemical Industry and Engineering Progree, 2012, 31(06): 1193-1199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |