Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (3): 1143-1154.DOI: 10.16085/j.issn.1000-6613.2022-0832
• Chemical processes and equipment • Previous Articles Next Articles
WU Weixiong1(), XIE Shiwei1, MA Ruixin1, LIU Jizhen1,2, WANG Shuangfeng3, RAO Zhonghao4()
Received:
2022-05-06
Revised:
2022-06-26
Online:
2023-04-10
Published:
2023-03-15
Contact:
RAO Zhonghao
吴伟雄1(), 谢世伟1, 马瑞鑫1, 刘吉臻1,2, 汪双凤3, 饶中浩4()
通讯作者:
饶中浩
作者简介:
吴伟雄(1989—),男,博士,副教授,研究方向为相变储能热管理。E-mail:weixiongwu@jnu.edu.cn。
基金资助:
CLC Number:
WU Weixiong, XIE Shiwei, MA Ruixin, LIU Jizhen, WANG Shuangfeng, RAO Zhonghao. Research progress of solid-liquid/gas-liquid multiphase coupling thermal control technology[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1143-1154.
吴伟雄, 谢世伟, 马瑞鑫, 刘吉臻, 汪双凤, 饶中浩. 固-液/气-液多相耦合热控技术应用研究进展[J]. 化工进展, 2023, 42(3): 1143-1154.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0832
应用领域 | PCM置于HP蒸发段 | PCM置于HP绝热段 | PCM置于HP冷凝段 | HP作为导热骨架整体嵌入PCM |
---|---|---|---|---|
电子器件冷却 | [ | [ | [ | — |
电池热管理 | [ | — | [ | [ |
蓄热/冷等其他领域 | [ | [ | [ | [ |
应用领域 | PCM置于HP蒸发段 | PCM置于HP绝热段 | PCM置于HP冷凝段 | HP作为导热骨架整体嵌入PCM |
---|---|---|---|---|
电子器件冷却 | [ | [ | [ | — |
电池热管理 | [ | — | [ | [ |
蓄热/冷等其他领域 | [ | [ | [ | [ |
热管类型 | 电子器件冷却 | 电池热管理 | 蓄热 | 蓄冷 |
---|---|---|---|---|
平板热管 | [ | [ | [ | — |
均温板(VC) | [ | — | — | — |
振荡热管 | [ | [ | [ | [ |
重力热管 | — | — | [ | [ |
环路热管 | — | [ | [ | [ |
其他热管 | [ | [ | [ | [ |
实验研究 | [ | [ | [ | [ |
模拟研究 | [ | [ | [ | [ |
热管类型 | 电子器件冷却 | 电池热管理 | 蓄热 | 蓄冷 |
---|---|---|---|---|
平板热管 | [ | [ | [ | — |
均温板(VC) | [ | — | — | — |
振荡热管 | [ | [ | [ | [ |
重力热管 | — | — | [ | [ |
环路热管 | — | [ | [ | [ |
其他热管 | [ | [ | [ | [ |
实验研究 | [ | [ | [ | [ |
模拟研究 | [ | [ | [ | [ |
1 | WU Weixiong, WANG Shuangfeng, WU Wei, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281. |
2 | JIANG Kun, LIAO Gaoliang, Jiaqiang E, et al. Thermal management technology of power lithium-ion batteries based on the phase transition of materials: A review[J]. Journal of Energy Storage, 2020, 32: 101816. |
3 | MURALI G, SRAVYA G S N, JAYA J, et al. A review on hybrid thermal management of battery packs and it’s cooling performance by enhanced PCM[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111513. |
4 | WU Weixiong, YANG Xiaoqing, ZHANG Guoqing, et al. An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack[J]. Energy, 2016, 113: 909-916. |
5 | Johnson Space Center. Space shuttle heat pipe thermal control systems[R]. 1973. |
6 | NAGHAVI M S, ONG K S, MEHRALI M, et al. A state-of-the-art review on hybrid heat pipe latent heat storage systems[J]. Energy Conversion and Management, 2015, 105: 1178-1204. |
7 | ALI H M. Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: A recent review[J]. Journal of Energy Storage, 2019, 26: 100986. |
8 | 周鑫晨, 章学来, 韩兴超, 等. 脉动热管/相变储能耦合技术研究进展[J]. 现代化工, 2018, 38(12): 58-61. |
ZHOU Xinchen, ZHANG Xuelai, HAN Xingchao, et al. Review on coupling technology between pulsating heat pipe and phase change energy storage[J]. Modern Chemical Industry, 2018, 38(12): 58-61. | |
9 | MALDONADO J M, DE GRACIA A, CABEZA L F. Systematic review on the use of heat pipes in latent heat thermal energy storage tanks[J]. Journal of Energy Storage, 2020, 32: 101733. |
10 | REAY D A. Thermal energy storage: the role of the heat pipe in performance enhancement[J]. International Journal of Low-Carbon Technologies, 2015, 10(2): 99-109. |
11 | CABEZA L F, CASTELL A, BARRENECHE C, et al. Materials used as PCM in thermal energy storage in buildings: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1675-1695. |
12 | YANG Xiaohu, YU Jiabang, XIAO Tian, et al. Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam[J]. Applied Energy, 2020, 261: 114385. |
13 | GAUGLER R S. Heat transfer device: US2350348[P]. 1944-06-06. |
14 | COTTER T P. Theory of heat pipes[M]. Los Alamos Scientific Laboratory of the University of California, 1965. |
15 | JOUHARA H, CHAUHAN A, NANNOU T, et al. Heat pipe based systems—Advances and applications[J]. Energy, 2017, 128: 729-754. |
16 | LI Z X, SARAFRAZ M M, MAZINANI A, et al. Operation analysis, response and performance evaluation of a pulsating heat pipe for low temperature heat recovery[J]. Energy Conversion and Management, 2020, 222: 113230. |
17 | CHAN C W, SIQUEIROS E, LING-CHIN J, et al. Heat utilisation technologies: A critical review of heat pipes[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 615-627. |
18 | SOHEL MURSHED S M, NIETO DE CASTRO C A. A critical review of traditional and emerging techniques and fluids for electronics cooling[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 821-833. |
19 | JI Xianbing, LI Hongchuan, XU Jinliang, et al. Integrated flat heat pipe with a porous network wick for high-heat-flux electronic devices[J]. Experimental Thermal and Fluid Science, 2017, 85: 119-131. |
20 | ZHAO Jiateng, RAO Zhonghao, LIU Chenzhen, et al. Experimental investigation on thermal performance of phase change material coupled with closed-loop oscillating heat pipe (PCM/CLOHP) used in thermal management[J]. Applied Thermal Engineering, 2016, 93: 90-100. |
21 | QU Jie, KE Zhiqi, ZUO Anhao, et al. Experimental investigation on thermal performance of phase change material coupled with three-dimensional oscillating heat pipe (PCM/3D-OHP) for thermal management application[J]. International Journal of Heat and Mass Transfer, 2019, 129: 773-782. |
22 | LI Zhiwei, Lucang LYU, LI Ji. Combination of heat storage and thermal spreading for high power portable electronics cooling[J]. International Journal of Heat and Mass Transfer, 2016, 98: 550-557. |
23 | HAYAT M A, ALI H M, JANJUA M M, et al. Phase change material/heat pipe and copper foam-based heat sinks for thermal management of electronic systems[J]. Journal of Energy Storage, 2020, 32: 101971. |
24 | LIN Y R, KOTA K, CHOW L, et al. Design of a thermal management system for directed energy weapons[C]// 41st AIAA Thermophysics Conference. AIAA, 2009: 4248. |
25 | WENG Yingche, CHO Hungpin, CHANG Chihchung, et al. Heat pipe with PCM for electronic cooling[J]. Applied Energy, 2011, 88(5): 1825-1833. |
26 | KRISHNA J, KISHORE P S, SOLOMON A B. Heat pipe with nano enhanced-PCM for electronic cooling application[J]. Experimental Thermal and Fluid Science, 2017, 81: 84-92. |
27 | ZHAO Jiateng, RAO Zhonghao, LIU Chenzhen, et al. Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management[J]. International Journal of Heat and Mass Transfer, 2016, 99: 252-260. |
28 | BEHI H, GHANBARPOUR M, BEHI M. Investigation of PCM-assisted heat pipe for electronic cooling[J]. Applied Thermal Engineering, 2017, 127: 1132-1142. |
29 | ZHANG Chunwei, YU Meng, FAN Yubin, et al. Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe[J]. Energy, 2020, 195: 116809. |
30 | ZHAO Jiateng, QU Jie, RAO Zhonghao. Thermal characteristic and analysis of closed loop oscillation heat pipe/phase change material (CLOHP/PCM) coupling module with different working media[J]. International Journal of Heat and Mass Transfer, 2018, 126: 257-266. |
31 | GHANBARPOUR A, HOSSEINI M J, RANJBAR A A, et al. Evaluation of heat sink performance using PCM and vapor chamber/heat pipe[J]. Renewable Energy, 2021, 163: 698-719. |
32 | YANG Xiaohu, TAN Sicong, HE Zhizhu, et al. Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock[J]. Energy Conversion and Management, 2018, 160: 467-476. |
33 | WU Weixiong, YANG Xiaoqing, ZHANG Guoqing, et al. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system[J]. Energy Conversion and Management, 2017, 138: 486-492. |
34 | HUANG Qiqiu, LI Xinxi, ZHANG Guoqing, et al. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system[J]. Applied Thermal Engineering, 2018, 141: 1092-1100. |
35 | PUTRA N, SANDI A F, ARIANTARA B, et al. Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles[J]. Case Studies in Thermal Engineering, 2020, 21: 100655. |
36 | CHEN Kai, HOU Junsheng, SONG Mengxuan, et al. Design of battery thermal management system based on phase change material and heat pipe[J]. Applied Thermal Engineering, 2021, 188:116665. |
37 | ZHAO Jiateng, Peizhao LYU, RAO Zhonghao. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack[J]. Experimental Thermal and Fluid Science, 2017, 82: 182-188. |
38 | 赵明旭. 基于相变材料与热管耦合的动力电池热管理研究[D]. 南京: 南京理工大学, 2018. |
ZHAO Mingxu. Research on power battery thermal management based on phase change material coupled with heat pipe[D]. Nanjing: Nanjing University of Science and Technology, 2018. | |
39 | WANG Qingchao, RAO Zhonghao, HUO Yutao, et al. Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system[J]. International Journal of Thermal Sciences, 2016, 102: 9-16. |
40 | JIANG Z Y, QU Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: A comprehensive numerical study[J]. Applied Energy, 2019, 242: 378-392. |
41 | 刘军, 卓威, 张文灿, 等. 基于PCM/泡沫铜/多孔热管复合相变材料的动力电池热管理研究[J]. 功能材料, 2018, 49(7): 7070-7075. |
LIU Jun, ZHUO Wei, ZHANG Wencan, et al. Research on heat management of power cell based on PCM/foamed copper/porous heat pipe composite phase change materials[J]. Journal of Functional Materials, 2018, 49(7): 7070-7075. | |
42 | BIRUR G C, JOHNSON K R, NOVAK K S, et al. Thermal control of Mars lander and rover batteries and electronics using loop heat pipe and phase change material thermal storage technologies[C]// SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000: 555-564. |
43 | ZHANG Wencan, QIU Jieyu, YIN Xiuxing, et al. A novel heat pipe assisted separation type battery thermal management system based on phase change material[J]. Applied Thermal Engineering, 2020, 165: 114571. |
44 | YUAN Qiuqi, XU Xiaoming, TONG Guangyao, et al. Effect of coupling phase change materials and heat pipe on performance enhancement of Li-ion battery thermal management system[J]. International Journal of Energy Research, 2021, 45(4): 5399-5411. |
45 | BEHI H, KARIMI D, GANDOMAN F H, et al. PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles[J]. Case Studies in Thermal Engineering, 2021, 25: 100920. |
46 | YOGEV R, KRIBUS A. PCM storage system with integrated active heat pipe[J]. Energy Procedia, 2014, 49: 1061-1070. |
47 | TIARI S, QIU S G, MAHDAVI M. Discharging process of a finned heat pipe-assisted thermal energy storage system with high temperature phase change material[J]. Energy Conversion and Management, 2016, 118: 426-437. |
48 | CAO Jingyu, LI Jing, ZHAO Pinghui, et al. Performance evaluation of controllable separate heat pipes[J]. Applied Thermal Engineering, 2016, 100: 518-527. |
49 | RIFFAT S B, OMER S A, MA X L. A novel thermoelectric refrigeration system employing heat pipes and a phase change material: An experimental investigation[J]. Renewable Energy, 2001, 23 (2): 313-323. |
50 | CABUSAO G, MOCHIZUKI M, MASHIKO K, et al. Data center energy conservation utilizing a heat pipe based ice storage system[C]//2010 IEEE CPMT Symposium Japan. IEEE, 2010: 1-4. |
51 | SINGH R, MOCHIZUKI M, MASHIKO K, et al. Heat pipe based cold energy storage systems for datacenter energy conservation[J]. Energy, 2011, 36(5): 2802-2811. |
52 | ZHANG Mingyi, LAI Yuanming, ZHANG Jianming, et al. Numerical study on cooling characteristics of two-phase closed thermosyphon embankment in permafrost regions[J]. Cold Regions Science and Technology, 2011, 65(2): 203-210. |
53 | DIALLO T M, YU M, ZHOU J Z, et al. Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger[J]. Energy, 2019, 167: 866-888. |
54 | CHIEH Jenjie, LIN Shuju, CHEN Sihli. Thermal performance of cold storage in thermal battery for air conditioning[J]. International Journal of Refrigeration, 2004, 27(2): 120-128. |
55 | LU Y L, ZHANG W H, YUAN P, et al. Experimental study of heat transfer intensification by using a novel combined shelf in food refrigerated display cabinets (experimental study of a novel cabinets)[J]. Applied Thermal Engineering, 2010, 30(2/3): 85-91. |
56 | FANG Guiyin, LIU Xu, WU Shuangmao. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe[J]. Experimental Thermal and Fluid Science, 2009, 33(8): 1149-1155. |
57 | MOUSAVI AJAROSTAGHI S S, PONCET S, SEDIGHI K, et al. Numerical modeling of the melting process in a shell and coil tube ice storage system for air-conditioning application[J]. Applied Sciences, 2019, 9(13): 2726. |
58 | WANG Tengyue, DIAO Yanhua, ZHU Tingting, et al. Thermal performance of solar air collection-storage system with phase change material based on flat micro-heat pipe arrays[J]. Energy Conversion and Management, 2017, 142: 230-243. |
59 | LI Fengfei, DIAO Yanhua, ZHAO Yaohua, et al. Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array[J]. Energy Conversion and Management, 2016, 112: 395-403. |
60 | XU Xiaofeng, ZHANG Xuelai, XIAO Yingjie. Research on influence of high and low temperature heat sources for heat transfer characteristics of pulsating heat pipe cold storage device[J]. Heat and Mass Transfer, 2022, 58(2): 233-246. |
61 | MALAN D J, DOBSON R T, DINTER F. Solar thermal energy storage in power generation using phase change material with heat pipes and fins to enhance heat transfer[J]. Energy Procedia, 2015, 69: 925-936. |
62 | AMINI A, MILLER J, JOUHARA H. An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers[J]. Energy, 2017, 136: 163-172. |
63 | ROBAK C W, BERGMAN T L, FAGHRI A. Enhancement of latent heat energy storage using embedded heat pipes[J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16): 3476-3484. |
64 | LOHRASBI S, MIRY S Z, GORJI-BANDPY M, et al. Performance enhancement of finned heat pipe assisted latent heat thermal energy storage system in the presence of nano-enhanced H2O as phase change material[J]. International Journal of Hydrogen Energy, 2017, 42(10): 6526-6546. |
65 | SHABGARD H, BERGMAN T L, SHARIFI N, et al. High temperature latent heat thermal energy storage using heat pipes[J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 2979-2988. |
66 | NITHYANANDAM K, PITCHUMANI R. Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power[J]. Applied Energy, 2013, 103: 400-415. |
67 | TIARI S, QIU S G, MAHDAVI M. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material[J]. Energy Conversion and Management, 2015, 89: 833-842. |
68 | TARDY F, SAMI S M. Thermal analysis of heat pipes during thermal storage[J]. Applied Thermal Engineering, 2009, 29(2/3): 329-333. |
69 | ALSHUKRI M J, EIDAN A A, NAJIM S I. Thermal performance of heat pipe evacuated tube solar collector integrated with different types of phase change materials at various location[J]. Renewable Energy, 2021, 171: 635-646. |
70 | SHARIFI N, WANG S M, BERGMAN T L, et al. Heat pipe-assisted melting of a phase change material[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3458-3469. |
71 | KHALIFA A, TAN L P, MAHONY D, et al. Numerical analysis of latent heat thermal energy storage using miniature heat pipes: A potential thermal enhancement for CSP plant development[J]. Applied Thermal Engineering, 2016, 108: 93-103. |
72 | GE Haoshan, LI Haiyan, MEI Shengfu, et al. Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 331-346. |
73 | ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): 3243. |
74 | ZHANG W C, LIANG Z C, WU W X, et al. Design and optimization of a hybrid battery thermal management system for electric vehicle based on surrogate model[J]. International Journal of Heat and Mass Transfer, 2021, 174: 121318. |
75 | MAIDMENT G G, MISSENDEN J F, KARAYIANNIS T G, et al. An investigation of a novel cooling system for chilled food display cabinets[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2005, 219(2): 157-165. |
76 | XU X F, ZHANG X L, MUNYALO J M. Key technologies and research progress on enhanced characteristics of cold thermal energy storage[J]. Journal of Molecular Liquids, 2019, 278: 428-437. |
77 | TURNPENNY J R, ETHERIDGE D W, REAY D A. Novel ventilation cooling system for reducing air conditioning in buildings (I): Testing and theoretical modelling[J]. Applied Thermal Engineering, 2000, 20(11): 1019-1037. |
78 | TURNPENNY J R, ETHERIDGE D W, REAY D A. Novel ventilation system for reducing air conditioning in buildings (II): Testing of prototype[J]. Applied Thermal Engineering, 2001, 21(12): 1203-1217. |
79 | ETHERIDGE D, MURPHY K, REAY D. A PCM/heat pipe cooling system for reducing air conditioning in buildings: Review of options and report on field tests[J]. Building Services Engineering Research and Technology, 2006, 27(1): 27-39. |
80 | YU Cairui, SHEN Dongmei, HE Wei, et al. Parametric analysis of the phase change material wall combining with micro-channel heat pipe and sky radiative cooling technology[J]. Renewable Energy, 2021, 178: 1057-1069. |
81 | HUSSEIN H M S, EL-GHETANY H H, NADA S A. Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit[J]. Energy Conversion and Management, 2008, 49(8): 2237-2246. |
[1] | HUI Bo, HOU Hongyi, ZHANG Tao, CHE Shengwen. Drying characteristics of cylindrical annular pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 33-40. |
[2] | XU Maoyu, TAO Shuai, QI Cong, LIANG Lin. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537. |
[3] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[4] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[5] | YU Junsheng, ZHU Ye, LI Qiankun, XU Shixuan, ZHANG Xinyang, WANG Cheng, QU Jian. Performance of pulsating heat pipe with rising and declining heat flux [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1178-1186. |
[6] | GAO Tingting, JIANG Zhen, WU Xiaoyi, HAO Tingting, MA Xuehu, WEN Rongfu. Experimental investigation on lithium-ion battery heat dissipation performance of oscillating heat pipe with micro-nano emulsion [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1167-1177. |
[7] | HAO Xubo, NIU Baolian, GUO Haotian, XU Xianghe, ZHANG Zhongbin, LI Yinglin. Modification of microencapsulated phase change material and its utilization in photothermal conversion [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 854-871. |
[8] | YANG Maofei, LI Jinwang, ZHOU Liuwei. Heat transfer performance of hydrophilic modified ultra-thin flat heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 692-698. |
[9] | BAI Jingang, YUAN Zhengji, LIU Yu, ZHANG Yishi, LYU Xifeng. Fabrication and thermal properties of decanoic acid-paraffin/graphene aerogel form-stable phase change materials [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4441-4448. |
[10] | ZHENG Suzheng, LI Nanxi, DONG Deping. Experimental and numerical investigation of loop heat pipe with flat ceramic capillary wick [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3510-3518. |
[11] | ZHU Mengshuai, WANG Zilong, SUN Xiangxin, ZHOU Xiang. Experimental research on effect of copper metal foam proportion on paraffin wax melting and heat transfer mechanism under high cell density [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3203-3211. |
[12] | ZHANG Ruirui, WANG Ning, GAO Zhi, YU Xiaohui, YANG Bin. Analysis of supercooling characteristics of erythritol/mannitol [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2959-2966. |
[13] | YANG Honghai, ZHANG Miao, LIU Liwei, ZHOU Yi, SHEN Junjie, SHI Weigang, YIN Yong. Heat transfer performance enhancement and prediction in GO/water pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1725-1734. |
[14] | HU Zhuohuan, YUAN Chengwei, XU Jiayin, LUO Ting, ZHOU Zhijie. Effect of metal 3D-printed composite capillary wick on loop heat pipe characteristics [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1715-1724. |
[15] | ZHOU Taotao, XIONG Zhibo, WU Zhigen, LI Shang. Characters of electric resistance and heating of expanded graphite/paraffin composite phase change materials [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 892-900. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |