Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (2): 803-813.DOI: 10.16085/j.issn.1000-6613.2022-0758
• Materials science and technology • Previous Articles Next Articles
ZHAO Yi1(), YANG Zhen2, WANG Jia1, LI Jingwen2, ZHENG Yu1,3
Received:
2022-04-25
Revised:
2022-06-10
Online:
2023-03-13
Published:
2023-02-25
Contact:
ZHAO Yi
通讯作者:
赵毅
作者简介:
赵毅(1980—),男,教授,研究方向为高性能沥青材料。E-mail:1585513635@qq.com。
基金资助:
CLC Number:
ZHAO Yi, YANG Zhen, WANG Jia, LI Jingwen, ZHENG Yu. Research progress on molecular dynamics simulation of self-healing behavior of asphalt binder[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 803-813.
赵毅, 杨臻, 王佳, 李静雯, 郑煜. 沥青胶结料自愈合行为分子动力学模拟研究进展[J]. 化工进展, 2023, 42(2): 803-813.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0758
1 | YAO Hui, LIU Junfu, XU Mei, et al. Discussion on molecular dynamics (MD) simulations of the asphalt materials[J]. Advances in Colloid and Interface Science, 2022,299: 102565. |
2 | 裴建新. 沥青裂缝自修复微胶囊的制备与表征[J]. 化工进展, 2016, 35(9): 2898-2904. |
PEI Jianxin. Preparation and properties of self-healing microcapsule for asphalt crack[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2898-2904. | |
3 | 徐建平, 赵毅, 梁乃兴, 等. 基于疲劳累积损伤的高模量沥青路面使用寿命预估[J]. 长安大学学报(自然科学版), 2018, 38(2): 26-33. |
XU Jianping, ZHAO Yi, LIANG Naixing, et al. Life prediction of high modulus asphalt pavement based on fatigue cumulative damage[J]. Journal of Chang’an University (Natural Science Edition), 2018, 38(2): 26-33. | |
4 | SUN Daquan, SUN Guoqiang, ZHU Xingyi, et al. A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement[J]. Advances in Colloid and Interface Science, 2018, 256: 65-93. |
5 | HE Liang, LI Guannan, Songtao LYU, et al. Self-healing behavior of asphalt system based on molecular dynamics simulation[J]. Construction and Building Materials, 2020, 254: 119225. |
6 | 何亮, 李冠男, 郑雨丰, 等. 沥青体系的分子动力学研究进展及展望[J]. 材料导报, 2020, 34(19): 19083-19093. |
HE Liang, LI Guannan, ZHENG Yufeng, et al. Research progress and prospect of molecular dynamics of asphalt systems[J]. Materials Reports, 2020, 34(19): 19083-19093. | |
7 | QU Xin, LIU Quan, GUO Meng, et al. Study on the effect of aging on physical properties of asphalt binder from a microscale perspective[J]. Construction and Building Materials, 2018, 187: 718-729. |
8 | DONG Zejiao, LIU Zhiyang, WANG Peng, et al. Nanostructure characterization of asphalt-aggregate interface through molecular dynamics simulation and atomic force microscopy[J]. Fuel, 2017, 189: 155-163. |
9 | LU Yang, WANG Linbing. Nano-mechanics modelling of deformation and failure behaviours at asphalt-aggregate interfaces[J]. International Journal of Pavement Engineering, 2011, 12(4): 311-323. |
10 | 郭鹏坤, 李攀, 常春, 等. 计算机模拟技术在生物质转化中的应用研究进展[J]. 化工进展, 2020, 39(8): 3027-3040. |
GUO Pengkun, LI Pan, CHANG Chun, et al. Advances in the application of computer simulation technology in biomass conversion[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3027-3040. | |
11 | GREENFIELD Michael L. Molecular modelling and simulation of asphaltenes and bituminous materials[J]. International Journal of Pavement Engineering, 2011, 12(4): 325-341. |
12 | HALWACHI Hassan K AL, YAKOVLEV Dmitry S, BOEK Edo S. Systematic optimization of asphaltene molecular structure and molecular weight using the quantitative molecular representation approach[J]. Energy & Fuels, 2012, 26(10): 6177-6185. |
13 | 丁勇杰. 基于分子模拟技术的沥青化学结构特征研究[D]. 重庆: 重庆交通大学, 2013. |
DING Yongjie. Study on chemical structure characteirstic of asphalt using molecular simulation[D]. Chongqing: Chongqing Jiaotong University, 2013. | |
14 | 李光升, 解强, 张香兰, 等. 基于分子模拟的低温煤焦油中酚类化合物的溶解特性[J]. 化工进展, 2020, 39(1): 137-144. |
LI Guangsheng, XIE Qiang, ZHANG Xianglan, et al. Solubility of phenolic compounds in low temperature coal tar based on molecular simulation[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 137-144. | |
15 | DICKIE John P, YEN Teh Fu. Macrostructures of the asphaltic fractions by various instrumental methods[J]. Analytical Chemistry, 1967, 39(14): 1847-1852. |
16 | KOWALEWSKI I, VANDENBROUCKE M, HUC A Y, et al. Preliminary results on molecular modeling of asphaltenes using structure elucidation programs in conjunction with molecular simulation programs[J]. Energy & Fuels, 1996, 10(1): 97-107. |
17 | HOU Yue, WANG Linbing, WANG Dawei, et al. Characterization of bitumen micro-mechanical behaviors using AFM, phase dynamics theory and MD simulation[J]. Materials, 2017, 10(2): 208. |
18 | 汪海年, 丁鹤洋, 冯珀楠, 等. 沥青混合料分子模拟技术综述[J]. 交通运输工程学报, 2020, 20(2): 1-14. |
WANG Hainian, DING Heyang, FENG Ponan, et al. Advances on molecular simulation technique in asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 1-14. | |
19 | BHASIN Amit, BOMMAVARAM Rammohan, GREENFIELD Michael L, et al. Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders[J]. Journal of Materials in Civil Engineering, 2011, 23(4): 485-492. |
20 | SUN Daquan, SUN Guoqiang, ZHU Xingyi, et al. Intrinsic temperature sensitive self-healing character of asphalt binders based on molecular dynamics simulations[J]. Fuel, 2018, 211: 609-620. |
21 | SUN Daquan, LIN Tianban, ZHU Xingyi, et al. Indices for self-healing performance assessments based on molecular dynamics simulation of asphalt binders[J]. Computational Materials Science, 2016, 114: 86-93. |
22 | SUN Daquan, SUN Guoqiang, ZHU Xingyi, et al. Identification of wetting and molecular diffusion stages during self-healing process of asphalt binder via fluorescence microscope[J]. Construction and Building Materials, 2017, 132: 230-239. |
23 | 邱欣, 徐文毅, 杨青, 等. 沥青黏结剂性能诊断与评价中的分子动力学模拟技术[J]. 浙江师范大学学报(自然科学版), 2020, 43(3): 284-292. |
QIU Xin, XU Wenyi, YANG Qing, et al. Molecular dynamics simulation technique in performance diagnosis and evaluation of asphalt binders[J]. Journal of Zhejiang Normal University (Natural Sciences), 2020, 43(3): 284-292. | |
24 | XU Guangji, WANG Hao. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10. |
25 | Lei LYU, LI Dong, CHEN Yuxian, et al. Dynamic chemistry based self-healing of asphalt modified by diselenide-crosslinked polyurethane elastomer[J]. Construction and Building Materials, 2021, 293: 123480. |
26 | AGZENAI Yahya, POZUELO Javier, SANZ Javier, et al. Advanced self-healing asphalt composites in the pavement performance field: Mechanisms at the nano level and new repairing methodologies[J]. Recent Patents on Nanotechnology, 2015, 9(1): 43-50. |
27 | HAGER Martin D, GREIL Peter, LEYENS Christoph, et al. Self-healing materials[J]. Advanced Materials, 2010, 22(47): 5424-5430. |
28 | CAI Jianchao, CHEN Yin, LIU Yang, et al. Capillary imbibition and flow of wetting liquid in irregular capillaries: A 100-year review[J]. Advances in Colloid and Interface Science, 2022, 304: 102654. |
29 | ANUPAM B R, SAHOO U C, CHANDRAPPA A K. A methodological review on self-healing asphalt pavements[J]. Construction and Building Materials, 2022, 321: 126395. |
30 | LI Yan, HAO Peiwen, ZHANG Mengya. Fabrication, characterization and assessment of the capsules containing rejuvenator for improving the self-healing performance of asphalt materials: A review[J]. Journal of Cleaner Production, 2021, 287: 125079. |
31 | WOOL R P, O’CONNOR K M. A theory crack healing in polymers[J]. Journal of Applied Physics, 1981, 52(10): 5953-5963. |
32 | WOOL R P, O’CONNOR K M. Time dependence of crack healing[J]. Journal of Polymer Science: Polymer Letters Edition, 1982, 20(1): 7-16. |
33 | KIM Young Hwa, WOOL Richard P. A theory of healing at a polymer-polymer interface[J]. Macromolecules, 1983, 16(7): 1115-1120. |
34 | DE GENNES P G. Reptation of a polymer chain in the presence of fixed obstacles[J]. The Journal of Chemical Physics, 1971, 55(2): 572-579. |
35 | 朱建勇, 何兆益. 沥青胶结料自愈合研究进展[J]. 材料导报, 2018, 32(5): 847-854. |
ZHU Jianyong, HE Zhaoyi. Research progress on self-healing of asphalt binder[J]. Materials Review, 2018, 32(5): 847-854. | |
36 | 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为: 理论研究, 评价方法, 影响因素, 数值模拟[J]. 材料导报, 2019, 33(5): 1517-1525. |
WANG Yongdan, LIU Ziming, HAO Peiwen. Self-healing behavior of fatigue damage in asphalt binders: Theoretical studies, evaluation approaches, influencing factors, numerical simulation[J]. Introduction to Materials, 2019, 33(5): 1517-1525. | |
37 | GASKIN Joshua. On bitumen microstructure and the effects of crack healing[D]. Nottingham: The University of Nottingham, 2013. |
38 | LYTTON R L. Characterizing asphalt pavements for performance[J]. Transportation Research Record: Journal of the Transportation Research Board, 2000, 1723(1): 5-16. |
39 | ZOLLINGER C. Application of surface energy measurements to evaluate moisture susceptibility of asphalt and aggregates[J]. Materials Science, 2005, 9:1-5. |
40 | HEFER A, LITTLE D, LYTTON R L. A synthesis of theories and mechanisms of bitumen-aggregate adhesion including recent advances in quantifying the effects of water[C]. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 2005, 74: 139-195. |
41 | SCHAPERY R A. On the mechanics of crack closing and bonding in linear viscoelastic media[J]. International Journal of Fracture, 1989, 39(1): 163-189. |
42 | LYTTON R, UZAN J, FERNANDO E, et al. Development and validation of performance prediction models and specifications for asphalt binders and paving mixes[J]. Engineering, 1993,17:1-2. |
43 | 余可心, 孙国强, 孙大权. 基于分子动力学模拟的沥青-再生剂扩散研究进展[J]. 石油沥青, 2021, 35(2): 27-34. |
YU Kexin, SUN Guoqiang, SUN Daquan. Research progress of diffusion between asphalt and regenerant based on molecular dynamics simulation[J]. Petroleum Asphalt, 2021, 35(2): 27-34. | |
44 | 苏曼曼, 司春棣, 张洪亮. 纳米ZnO改性沥青分子动力学模拟研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(11): 118-127. |
SU Manman, SI Chundi, ZHANG Hongliang. Molecular dynamics simulation of nano-ZnO modified asphalt[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(11): 118-127. | |
45 | 王鹏, 黄世军, 赵凤兰, 等. 沥青质微观聚集特征的分子动力学研究[J]. 油气地质与采收率, 2021, 28(4): 77-85. |
WANG Peng, HUANG Shijun, ZHAO Fenglan, et al. Molecular dynamics study of microcosmic aggregation of asphaltenes[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(4): 77-85. | |
46 | 丛玉凤, 廖克俭, 翟玉春. 分子模拟在SBS改性沥青中的应用[J]. 化工学报, 2005, 56(5): 769-773. |
CONG Yufeng, LIAO Kejian, ZHAI Yuchun. Application of molecular simulation for study of SBS modified asphalt[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(5): 769-773. | |
47 | CONG Yufeng, HUANG Wei, LIAO Kejian, et al. Study on composition and structure of Liaoshu asphalt[J]. Petroleum Science and Technology, 2004, 22(11/12): 1447-1454. |
48 | DING Yongjie, HUANG Baoshan, SHU Xiang, et al. Use of molecular dynamics to investigate diffusion between virgin and aged asphalt binders[J]. Fuel, 2016, 174: 267-273. |
49 | STORM D A, EDWARDS J C, DECANIO S J, et al. Molecular representations of ratawi and Alaska north slope asphaltenes based on liquid- and solid-state NMR[J]. Energy & Fuels, 1994, 8(3): 561-566. |
50 | 唐伯明, 丁勇杰, 朱洪洲, 等. 沥青分子聚集状态变化特征研究[J]. 中国公路学报, 2013, 26(3): 50-56, 76. |
TANG Boming, DING Yongjie, ZHU Hongzhou, et al. Study on agglomeration variation pattern of asphalt molecules[J]. China Journal of Highway and Transport, 2013, 26(3): 50-56, 76. | |
51 | LU Yang, WANG Linbing. Nanoscale modelling of mechanical properties of asphalt-aggregate interface under tensile loading[J]. International Journal of Pavement Engineering, 2010, 11(5): 393-401. |
52 | 王吉. 沥青材料自愈合行为的分子动力学模拟[D]. 长春: 吉林大学, 2021. |
WANG Ji. Molecular dynamics simulation of self-healing behavior of asphalt materials[D]. Changchun: Jilin University, 2021. | |
53 | 谢士杰. 聚合物玻璃化转变行为的分子动力学模拟研究[D]. 长春: 吉林大学, 2015. |
XIE Shijie. Molecular dynamics simulation study on the glass transition behavior of polymers[D]. Changchun: Jilin University, 2015. | |
54 | WILLIAMS Malcolm L, LANDEL Robert F, FERRY John D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids[J]. Journal of the American Chemical Society, 1955, 77(14): 3701-3707. |
55 | 单超. 基于分子模拟技术的沥青-矿料界面力学性能研究[D]. 长春: 吉林大学, 2021. |
SHAN Chao. Study on mechanical properties of asphalt-mineral aggregate interface based on molecular simulation technology[D]. Changchun: Jilin University, 2021. | |
56 | ZHENG Chuanfeng, SHAN Chao, LIU Jian, et al. Microscopic adhesion properties of asphalt-mineral aggregate interface in cold area based on molecular simulation technology[J]. Construction and Building Materials, 2021, 268: 121151. |
57 | 曹雪娟, 苏玥, 邓梅. 基于分子动力学模拟的聚合物改性剂与沥青相互作用研究[J]. 化工新型材料, 2021, 49(9): 234-239. |
CAO Xuejuan, SU Yue, DENG Mei. Investigation on interaction between polymer modifier and asphalt based on molecular dynamics simulation[J]. New Chemical Materials, 2021, 49(9): 234-239. | |
58 | 张德勤. 石油沥青的生产与应用[M]. 北京: 中国石化出版社, 2001. |
ZHANG Deqin. Production and application of petroleum asphalt [M]. Beijing: China Petrochemical Press, 2001. | |
59 | 刘福军, 辛诚, 管明阳, 等 基于分子动力学模拟研究废食用油-老化沥青的扩散行为 [J]. 公路工程, 2022, 47(5): 120-125, 131. |
LIU Fujun, XIN Cheng, GUAN Mingyang, et al. Research on diffusion behavior of waste edible oil-aged asphalt based on molecular dynamics simulation[J]. Highway Engineering, 2022, 47(5): 120-125, 131. | |
60 | 罗磊. 沥青与矿料界面相互作用的分子动力学模拟研究[D]. 西安: 长安大学, 2021. |
LUO Lei. Molecular dynamics simulation of asphalt-aggregate interfacial interaction[D]. Xi’an: Chang’an University, 2021. | |
61 | BANDURA A V, KUBICKI J D, SOFO J O. Periodic density functional theory study of water adsorption on the α-quartz (101) surface[J]. The Journal of Physical Chemistry C, 2011, 115(13): 5756-5766. |
62 | 邱延峻, 苏婷, 郑鹏飞, 等. 基于分子模拟的沥青胶结料物理老化机理研究[J]. 建筑材料学报, 2020, 23(6): 1464-1470. |
QIU Yanjun, SU Ting, ZHENG Pengfei, et al. Physical aging mechanism of asphalt binder based on molecular simulation[J]. Journal of Building Materials, 2020, 23(6): 1464-1470. | |
63 | 杨健, 郭乃胜, 郭晓阳, 等. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(S2): 138-144. |
YANG Jian, GUO Naisheng, GUO Xiaoyang, et al. Adhesion of foamed asphalt-aggregate interface based on molecular dynamics[J]. Materials Reports, 2021, 35(S2): 138-144. | |
64 | XU Guangji, WANG Hao. Molecular dynamics study of interfacial mechanical behavior between asphalt binder and mineral aggregate[J]. Construction and Building Materials, 2016, 121: 246-254. |
65 | XU Guangji, WANG Hao. Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation[J]. Computational Materials Science, 2016, 112: 161-169. |
66 | PAINTER P. The characterization of asphalt and asphalt recyclability[R]. Strategic Highway Research Program, National Research Council, Washington D C, 1993: 1-32. |
67 | 朱建勇. 沥青胶结料自愈合行为的分子动力学模拟[J]. 建筑材料学报, 2018, 21(3): 433-439. |
ZHU Jianyong. Molecular dynamic simulation of self-healing behavior of asphalt binder[J]. Journal of Building Materials, 2018, 21(3): 433-439. | |
68 | 朱建勇, 何兆益. 抗剥落剂与沥青相容性的分子动力学研究[J]. 公路交通科技, 2016, 33(1): 34-40. |
ZHU Jianyong, HE Zhaoyi. Research of compatiblity of asphalt and anti-stripping agent using molecular dynamics[J]. Journal of Highway and Transportation Research and Development, 2016, 33(1): 34-40. | |
69 | 王吉, 郑传峰. 沥青混合料界面黏附黏结效应分子动力学研究[J]. 路基工程, 2021(2): 15-21. |
WANG Ji, ZHENG Chuanfeng. Study on molecular dynamics of interfacial adhesion and cohesion of asphalt mixture[J]. Subgrade Engineering, 2021(2): 15-21. | |
70 | 汤文, 王基双, 吕悦晶. 基于分子动力学的沥青自愈合行为研究[J]. 武汉科技大学学报, 2020, 43(2): 123-127. |
TANG Wen, WANG Jishuang, LV Yuejing. Study on self-healing behavior of asphalt binder based on molecular dynamics[J]. Journal of Wuhan University of Science and Technology, 2020, 43(2): 123-127. | |
71 | JONES D R. SHRP materials reference library: Asphalt cements. A concise data compilation[R]. Strategic Highway Research Program, National Research Council, Washington D C, 1993, 10: 1-33. |
72 | XU Guangji, WANG Hao. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10. |
73 | YAO Hui, DAI Qingli, YOU Zhanping. Investigation of the asphalt-aggregate interaction using molecular dynamics[J]. Petroleum Science and Technology, 2017, 35(6): 586-593. |
74 | SHEN Shihui, LU Xin, LIU Liping, et al. Investigation of the influence of crack width on healing properties of asphalt binders at multi-scale levels[J]. Construction and Building Materials, 2016, 126: 197-205. |
75 | GONG Yan, XU Jian, YAN Erhu, et al. The self-healing performance of carbon-based nanomaterials modified asphalt binders based on molecular dynamics simulations[J]. Frontiers in Materials, 2021, 7: 599551. |
76 | 徐业守, 徐赵东, 郭迎庆, 等. 基于分子动力学模拟的天然橡胶黏弹性材料力学行为[J]. 东南大学学报(自然科学版), 2021, 51(3): 365-370. |
XU Yeshou, XU Zhaodong, GUO Yingqing, et al. Mechanical behaviors of natural rubber viscoelastic materials based on molecular dynamics simulation[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(3): 365-370. | |
77 | 高新文, 刘朝晖. 生物油再生沥青自愈合机理分析[J]. 中国公路学报, 2019, 32(4): 235-242. |
GAO Xinwen, LIU Zhaohui. Self-healing mechanism of bio-oil recycled asphalt[J]. China Journal of Highway and Transport, 2019, 32(4): 235-242. | |
78 | HU Dongliang, PEI Jianzhong, LI Rui, et al. Using thermodynamic parameters to study self-healing and interface properties of crumb rubber modified asphalt based on molecular dynamics simulation[J]. Frontiers of Structural and Civil Engineering, 2020, 14(1): 109-122. |
79 | 许建业, 刘富良, 林添坂, 等. 沥青混凝土疲劳损伤自愈合行为研究进展(4)——沥青自愈合分子动力学模拟[J]. 石油沥青, 2016, 30(2): 61-66. |
XU Jianye, LIU Fuliang, LIN Tianban, et al. Review on self-healing behavior of asphalt concrete(4)—Molecular dynamics simulation of self-healing in asphalt[J]. Petroleum Asphalt, 2016, 30(2): 61-66. | |
80 | YU Tengjiang, ZHANG Haitao, WANG Ying. Multi-gradient analysis of temperature self-healing of asphalt nano-cracks based on molecular simulation[J]. Construction and Building Materials, 2020, 250: 118859. |
81 | SCHULER Bruno, MEYER Gerhard, Diego PEÑA, et al. Unraveling the molecular structures of asphaltenes by atomic force microscopy[J]. Journal of the American Chemical Society, 2015, 137(31): 9870-9876. |
82 | XU Meng, YI Junyan, FENG Decheng, et al. Analysis of adhesive characteristics of asphalt based on atomic force microscopy and molecular dynamics simulation[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12393-12403. |
[1] | WANG Shaofan, ZHOU Ying, HAO Kang’an, HUANG Anrong, ZHANG Ruju, WU Chong, ZUO Xiaoling. Self-healing and blue-light hydrogel with pH responsiveness [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4837-4846. |
[2] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[3] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
[4] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[5] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[6] | XI Huimin, QIAN Kun, YU Kejing, LI Jie, ZHANG Zhongwei, XIONG Ziming, ZHANG Yaoliang. Preparation, modification and application of self-healing polyurethane elastomers based on disulfide and hydrogen bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 934-943. |
[7] | LI Jingjing, ZHAO Yao, XU Fengchi, LI Kangjian. Heavy metal leaching characteristics of porous asphalt mixture containing MSWI-BAA under different stormwater runoff flow rates [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5520-5530. |
[8] | SUN Xianhang, REN Zhu, ZHANG Guojun, SUN Yuan, FAN Kaifeng, HUANG Weiqiu. Study on the desorption mechanism of toluene in activated carbon under supercritical CO2 [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 631-636. |
[9] | LI Hao, GUO Rongxin, YAN Yong. Low temperature performance of high modulus asphalt binder and mixtures: a review [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 351-365. |
[10] | QIU Yijuan, LIN Jiawei, QIN Jirui, WU Jiayin, LIN Fengcai, LU Beili, TANG Lirong, HUANG Biao. Double dynamic covalent bond crosslinked nano-cellulose conductive hydrogel for a flexible sensor [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4406-4416. |
[11] | ZHANG Xincheng, HE Lin, SUI Hong, LI Xingang. Demulsification process and enhancement by viscosity reduction for water-in-heavy oil emulsions [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3534-3544. |
[12] | ZHANG Shizhong, CHEN Zhanxiu, LIU Fengrui, PANG Runyu, WANG Qing. Molecular dynamics simulation of liquid boiling on nanostructured surfaces [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2311-2321. |
[13] | LIU Jing, ZHENG Xinguo, LI Tiejun, WANG Caiping, ZHAO Yanxu, LI Ying, LOU Liangwei, SHEN Wei. Mechanical properties and micromorphology of redispersible emulsified asphalt powder modified cement mortar [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2015-2021. |
[14] | ZHANG Xueying, MA Jun, HE Lin, SUI Hong, LI Xingang. Molecular structure of interfacially active asphaltene in asphalt rock and its adsorption characteristics on mineral surface [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 628-636. |
[15] | DING Jiaying, XUE Yongbing, LIU Zhenmin, LI Tao, CHU Yifan. Research progress of environmentally asphalt [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 226-231. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |