Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (1): 435-444.DOI: 10.16085/j.issn.1000-6613.2022-0588
• Resources and environmental engineering • Previous Articles Next Articles
LU Shijian1,2(), LIU Miaomiao1,2, LIU Ling1,2, KANG Guojun1,2, MAO Songbai3, WANG Feng1,2, ZHANG Juanjuan1,2, GONG Yuping1,2
Received:
2022-04-08
Revised:
2022-04-26
Online:
2023-02-20
Published:
2023-01-25
Contact:
LU Shijian
陆诗建1,2(), 刘苗苗1,2, 刘玲1,2, 康国俊1,2, 毛松柏3, 王风1,2, 张娟娟1,2, 贡玉萍1,2
通讯作者:
陆诗建
作者简介:
陆诗建(1984—),博士,研究员,研究方向为CCUS与废气治理技术。E-mail:lushijian@cumt.edu.cn。
基金资助:
CLC Number:
LU Shijian, LIU Miaomiao, LIU Ling, KANG Guojun, MAO Songbai, WANG Feng, ZHANG Juanjuan, GONG Yuping. Progress and future development trend of amine method of CO2 capture technology from flue gas[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 435-444.
陆诗建, 刘苗苗, 刘玲, 康国俊, 毛松柏, 王风, 张娟娟, 贡玉萍. 烟气胺法CO2捕集技术进展与未来发展趋势[J]. 化工进展, 2023, 42(1): 435-444.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0588
工程名称 | 碳捕集类型 | 规模 | 现状 | 碳捕集量 |
---|---|---|---|---|
华能上海石洞口电厂捕集 | 燃烧后 | 示范 | 运营(2009年) | 10万吨/年 |
中电投重庆双槐电厂 碳捕集 | 燃烧后 | 试点 | 运营(2010年) | 1万吨/年 |
中石化胜利油田CO2-EOR项目 | 燃烧后 | 试点 | 运营(2010年) | 4万吨/年 |
国电集团天津北塘热电厂 | 燃烧后 | 示范 | 运营(2012年) | 2万吨/年 |
华能集团北京热电厂CO2捕集 | 燃烧后 | 试点 | 已结束 | 3000吨/年 |
华润海丰碳捕集测试平台 | 燃烧后 | 试点 | 运营(2019年) | 2万吨/年 |
中石油吉林油田CO2-EOR项目 | 燃烧后 | 示范 | 运营(2018年) | 60万吨/年 |
华电句容电厂1万吨/年CO2捕集 | 燃烧后 | 示范 | 运营(2019年) | 1万吨/年 |
国华锦界电厂15万吨/年CO2捕集 | 燃烧后 | 示范 | 运营(2021年) | 15万吨/年 |
工程名称 | 碳捕集类型 | 规模 | 现状 | 碳捕集量 |
---|---|---|---|---|
华能上海石洞口电厂捕集 | 燃烧后 | 示范 | 运营(2009年) | 10万吨/年 |
中电投重庆双槐电厂 碳捕集 | 燃烧后 | 试点 | 运营(2010年) | 1万吨/年 |
中石化胜利油田CO2-EOR项目 | 燃烧后 | 试点 | 运营(2010年) | 4万吨/年 |
国电集团天津北塘热电厂 | 燃烧后 | 示范 | 运营(2012年) | 2万吨/年 |
华能集团北京热电厂CO2捕集 | 燃烧后 | 试点 | 已结束 | 3000吨/年 |
华润海丰碳捕集测试平台 | 燃烧后 | 试点 | 运营(2019年) | 2万吨/年 |
中石油吉林油田CO2-EOR项目 | 燃烧后 | 示范 | 运营(2018年) | 60万吨/年 |
华电句容电厂1万吨/年CO2捕集 | 燃烧后 | 示范 | 运营(2019年) | 1万吨/年 |
国华锦界电厂15万吨/年CO2捕集 | 燃烧后 | 示范 | 运营(2021年) | 15万吨/年 |
工程名称 | 国家 | 捕集类型 | 现状 | 碳捕集量 |
---|---|---|---|---|
ShadyPoint电厂 | 美国 | 燃煤电厂 | 商业运行 | 2200吨/天 |
WorriorRun电厂 | 美国 | 燃煤电厂 | 运行中(2000年) | 150吨/天 |
JPower碳捕集实验 示范项目 | 日本 | 燃煤电厂 | 运行中(2006年) | 10吨/天 |
SaskPower CCS工程 | 加拿大 | 燃煤电厂 | 运行中(2007年) | 100万吨/年 |
边界坝碳捕集与 储存项目 | 加拿大 | 燃煤电厂 | 运行中(2014年) | 100万吨/年 |
Petra Nova碳捕集项目 | 美国 | 燃煤电厂 | 运行中(2017年) | 140万吨/年 |
Mikawa碳捕集工程 | 日本 | 生物质燃烧电厂 | 运行中(2020年) | 15万吨/年 |
工程名称 | 国家 | 捕集类型 | 现状 | 碳捕集量 |
---|---|---|---|---|
ShadyPoint电厂 | 美国 | 燃煤电厂 | 商业运行 | 2200吨/天 |
WorriorRun电厂 | 美国 | 燃煤电厂 | 运行中(2000年) | 150吨/天 |
JPower碳捕集实验 示范项目 | 日本 | 燃煤电厂 | 运行中(2006年) | 10吨/天 |
SaskPower CCS工程 | 加拿大 | 燃煤电厂 | 运行中(2007年) | 100万吨/年 |
边界坝碳捕集与 储存项目 | 加拿大 | 燃煤电厂 | 运行中(2014年) | 100万吨/年 |
Petra Nova碳捕集项目 | 美国 | 燃煤电厂 | 运行中(2017年) | 140万吨/年 |
Mikawa碳捕集工程 | 日本 | 生物质燃烧电厂 | 运行中(2020年) | 15万吨/年 |
1 | JIANG Kejun, CHEN Sha, HE Chenmin, et al. Energy transition, CO2 mitigation, and air pollutant emission reduction: scenario analysis from IPAC model[J]. Natural Hazards, 2019, 99(3): 1277-1293. |
2 | 蔡博峰, 庞凌云, 曹丽斌, 等. 《二氧化碳捕集、利用与封存环境风险评估技术指南(试行)》实施2年(2016—2018年)评估[J]. 环境工程, 2019, 37(2): 1-7. |
CAI Bofeng, PANG Lingyun, CAO Libin, et al. Two-year implementation assessment (2016—2018) of China’s technical guideline on environmental risk assessment for carbon dioxide capture, utilization and storage (on trial)[J]. Environmental Engineering, 2019, 37(2): 1-7. | |
3 | IEA. Special report on carbon capture utilization and storage[R/OL]. Energy Technology Perspectives 2020, 2020. . |
4 | IPCC. Special Report on Global Warming of 1.5℃[M]. UK: Cambridge University Press, 2018. |
5 | SHAN Yuli, GUAN Dabo, ZHENG Heran, et al. China CO2 emission accounts 1997—2015[J]. Scientific Data, 2018, 5: 170201. |
6 | LU Shijian, ZHAO Dongya, LIU Hang, et al. The research of net carbon reduction model for CCS-EOR projects and cases study[J]. International Journal of Simulation and Process Modelling, 2017, 12(5): 401. |
7 | 叶凯. 基于有机胺吸收法的碳捕集工艺研究进展[J]. 中国资源综合利用, 2021, 39(9): 117-119. |
YE Kai. Research progress of carbon capture technology based on organic amine absorption method[J]. China Resources Comprehensive Utilization, 2021, 39(9): 117-119. | |
8 | 张金鑫. 胺法烟气CO2捕集工艺及热泵节能技术研究[D]. 东营: 中国石油大学(华东), 2018. |
ZHANG Jinxin. Research on CO2 capture process by amine method and the technology of heat pump energy saving[D]. Dongying: China University of Petroleum (Huadong), 2018. | |
9 | 孙路长, 王争荣, 吴冲, 等. 燃煤电厂万吨级碳捕集工程设计与运行优化研究[J]. 华电技术, 2021, 43(6): 69-78. |
SUN Luchang, WANG Zhengrong, WU Chong, et al. Research on operation optimization of a 10000t/a carbon capture project for coal-fired power plants[J]. Huadian Technology, 2021, 43(6): 69-78. | |
10 | KHAN A A, HALDER G, SAHA A K. Experimental investigation on efficient carbon dioxide capture using piperazine (PZ) activated aqueous methyldiethanolamine (MDEA) solution in a packed column[J]. International Journal of Greenhouse Gas Control, 2017, 64: 163-173. |
11 | ZHANG Rui, ZHANG Xiaowen, YANG Qi, et al. Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC)[J]. Applied Energy, 2017, 205: 1002-1011. |
12 | DASH S K, PARIKH R, KAUL D. Development of efficient absorbent for CO2 capture process based on (AMP + 1MPZ)[J]. Materials Today: Proceedings, 2022, 62: 7072-7076. |
13 | YANG Fushen, JIN Xianhang, FANG Jiawei, et al. Development of CO2 phase change absorbents by means of the cosolvent effect[J]. Green Chemistry, 2018, 20(10): 2328-2336. |
14 | ZHANG Weidong, JIN Xianhang, TU Weiwei, et al. Development of MEA-based CO2 phase change absorbent[J]. Applied Energy, 2017, 195: 316-323. |
15 | 吕碧洪, 詹晓慧, 李昕, 等. 氨基-唑基双功能化离子液体相变吸收剂捕集CO2机制 [J]. 中国科学: 化学, 2021, 51(12): 1660-1670. |
Bihong LYU, ZHAN Xiaohui, LI Xin, et al. Mechanism of CO2 capture into amino-azolyl dual-functionalized ionic liquid biphasic solvent[J]. Scientia Sinica Chimica), 2021, 51(12): 1660-1670. | |
16 | 周小斌. 新型两相胺吸收剂捕集二氧化碳研究[D]. 泉州: 华侨大学, 2019. |
ZHOU Xiaobin. Study on carbon dioxide capture using a novel biphasic solvent[D]. Quanzhou: Huaqiao University, 2019. | |
17 | WANG Rujie, JIANG Lei, LI Qiangwei, et al. Energy-saving CO2 capture using sulfolane-regulated biphasic solvent[J]. Energy, 2020, 211: 118667. |
18 | WANG Rujie, LIU Shanshan, WANG Lidong, et al. Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas[J]. Applied Energy, 2019, 242: 302-310. |
19 | FU Kun, ZHANG Pan, WANG Lemeng, et al. Viscosity of 2-ethylhexan-1-amine (EHA)-diglyme, EHA-triglyme and EHA-tetraglyme non-aqueous solutions and its effect on initial absorption rate[J]. Journal of Molecular Liquids, 2020, 302: 112518. |
20 | FU Kun, LIU Chenxu, WANG Lemeng, et al. Performance and mechanism of CO2 absorption in 2-ethylhexan-1-amine + glyme non-aqueous solutions[J]. Energy, 2021, 220: 119735. |
21 | 郭晖. 有机胺/醇醚非水混合体系吸收CO2过程特性研究[D]. 石家庄: 河北科技大学, 2019. |
GUO Hui. Research on CO2 absorption process using organic amine/glycol ether non-aqueous blends[D]. Shijiazhuang: Hebei University of Science and Technology, 2019. | |
22 | BOUGIE F, POKRAS D, FAN Xianfeng. Novel non-aqueous MEA solutions for CO2 capture[J]. International Journal of Greenhouse Gas Control, 2019, 86: 34-42. |
23 | CHEN Meisi, WANG Xindian, LIU Xiemin, et al. Anhydrous “dry ionic liquids”: a promising absorbent for CO2 capture[J]. Journal of Molecular Liquids, 2020, 305: 112810. |
24 | 金羿, 卫慧凯, 段东红. 羟基吡啶型离子液体及其复配体系对CO2的吸收性能研究[J]. 化工新型材料, 2018, 46(7): 209-211. |
JIN Yi, WEI Huikai, DUAN Donghong. Investigation of CO2 absorption property of hydroxypyridine ionic liquid and their complex system[J]. New Chemical Materials, 2018, 46(7): 209-211. | |
25 | 郭雨桐, 包海艺, 袁佳敏, 等. 离子液体[TETAH]+[BF4]--乙二醇混合体系吸收CO2的实验研究[J]. 环境科学学报, 2020, 40(2): 492-496. |
GUO Yutong, BAO Haiyi, YUAN Jiamin, et al. Experimental study on CO2 absorption by ionic liquid[TETAH]+[BF4]--ethylene glycol mixed solvent[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 492-496. | |
26 | TAVAKOLI A, RAHIMI K, SAGHANDALI F, et al. Nanofluid preparation, stability and performance for CO2 absorption and desorption enhancement: a review[J]. Journal of Environmental Management, 2022, 313: 114955. |
27 | 叶航, 刘琦, 彭勃, 等. 纳米颗粒强化胺法吸收CO2研究进展[J]. 热力发电, 2021, 50(1): 74-81. |
YE Hang, LIU Qi, PENG Bo, et al. Review on CO2 absorption enhancement by nanoparticles in amine solutions[J]. Thermal Power Generation, 2021, 50(1): 74-81. | |
28 | SAIDI M. CO2 absorption intensification using novel DEAB amine-based nanofluids of CNT and SiO2 in membrane contactor[J]. Chemical Engineering and Processing-Process Intensification, 2020, 149: 107848. |
29 | 赵子淇, 张忠孝, 江砚池, 等. 纳米颗粒及分散剂对TETA溶液吸收CO2的影响[J]. 洁净煤技术, 2021, 27(2): 231-236. |
ZHAO Ziqi, ZHANG Zhongxiao, JIANG Yanchi, et al. Effect of nanoparticles and dispersant on CO2 absorption by TETA solution[J]. Clean Coal Technology, 2021, 27(2): 231-236. | |
30 | SEO S, LAGES B, KIM M. Catalytic CO2 absorption in an amine solvent using nickel nanoparticles for post-combustion carbon capture[J]. Journal of CO2 Utilization, 2020, 36: 244-252. |
31 | SALEH BAIRQ Z ALI, GAO Hongxia, HUANG Yufei, et al. Enhancing CO2 desorption performance in rich MEA solution by addition of SO 4 2 - /ZrO2/SiO2 bifunctional catalyst[J]. Applied Energy, 2019, 252: 113440. |
32 | CASTRO M, GÓMEZ-DÍAZ D, NAVAZA J M, et al. Carbon dioxide capture by chemical solvents based on amino acids: absorption and regeneration[J]. Chemical Engineering & Technology, 2021, 44(2): 248-257. |
33 | RAMEZANI R, MAZINANI S, DI FELICE R. State-of-the-art of CO2 capture with amino acid salt solutions[J]. Reviews in Chemical Engineering, 2022, 38(3): 273-299. |
34 | 方梦祥, 周旭萍, 王涛, 等. CO2化学吸收剂[J]. 化学进展, 2015, 27(12): 1808-1814. |
FANG Mengxiang, ZHOU Xuping, WANG Tao, et al. Solvent development in CO2 chemical absorption[J]. Progress in Chemistry, 2015, 27(12): 1808-1814. | |
35 | GAO Ge, LI Xiaoshan, JIANG Wufeng, et al. Improved quasi-cycle capacity method based on microcalorimetry strategy for the fast screening of amino acid salt absorbents for CO2 capture[J]. Separation and Purification Technology, 2022, 289: 120767. |
36 | 赵月. 赖氨酸钾水溶液捕集电厂烟气中CO2的应用基础研究[D]. 石家庄: 河北科技大学, 2018. |
ZHAO Yue. Applied fundamental research on CO2 capture using aqueous potassium lysinate solutions from power plant flue gas[D]. Shijiazhuang: Hebei University of Science and Technology, 2018. | |
37 | REHAN M, RAHMANIAN N, HYATT X, et al. Energy savings in CO2 capture system through intercooling mechanism[J]. Energy Procedia, 2017, 142: 3683-3688. |
38 | 李景辉, 叶仲斌, 吴基荣, 等. 醇胺法天然气脱硫脱碳装置有效能分析与节能措施探讨[J]. 现代化工, 2018, 38(6): 186-191. |
LI Jinghui, YE Zhongbin, WU Jirong, et al. Analysis on effective energy and study on energy saving measures for natural gas desulfurization and decarbonization plant by alcohol amine method[J]. Modern Chemical Industry, 2018, 38(6): 186-191. | |
39 | 高丽娟. CO2捕集解吸塔顶蒸汽热能回收及能量综合利用研究[D]. 东营: 中国石油大学(华东), 2019. |
GAO Lijuan. Study on heat recovery of steam at the top of desorption tower and energy comprehensive utilization on CO2 capture system[D]. Dongying: China University of Petroleum (Huadong), 2019. | |
40 | 李小飞, 王淑娟, 陈昌和. 胺法脱碳系统流程改进及优化模拟[J]. 化工学报, 2013, 64(10): 3750-3759. |
LI Xiaofei, WANG Shujuan, CHEN Changhe. Modification of process and optimization for CO2 capture systems using amine solution[J]. CIESC Journal, 2013, 64(10): 3750-3759. | |
41 | LU Shijian, ZHAO Dongya, ZHU Quanmin. CO2 absorber coupled with double pump CO2 capture technology for coal-fired flue gas[J]. Energy Procedia, 2018, 154: 163-170. |
42 | 鹿莎莎, 黄川, 申亚栋, 等. 膜接触法捕集生物质气CO2的研究进展[J]. 环境化学, 2021, 40(4): 1088-1099. |
LU Shasha, HUANG Chuan, SHEN Yadong, et al. Research progress of membrane contactor technology on CO2 capture[J]. Environmental Chemistry, 2021, 40(4): 1088-1099. | |
43 | 庞宏磊. 用于膜接触吸收的超疏水中空纤维膜的制备及其对CO2传质性能的研究[D]. 南京: 南京大学, 2020. |
PANG Honglei. Study of preparation of superhydrophobic hollow fiber membrane for membrane contact absorption and its the mass transfer performance for CO2 [D]. Nanjing: Nanjing University, 2020. | |
44 | 吴佳佳, 潘振, 商丽艳, 等. 中空纤维膜接触器中N,N-二甲基乙醇胺吸收CO2的特性[J]. 化工进展, 2022, 41(4): 2132-2139. |
WU Jiajia, PAN Zhen, SHANG Liyan, et al. Characteristics of CO2 absorption by N,N-dimethylethanolamine(DMEA) in hollow fiber membrane contactor[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2132-2139. | |
45 | MAGNONE E, LEE H J, SHIN M C, et al. A performance comparison study of five single and sixteen blended amine absorbents for CO2 capture using ceramic hollow fiber membrane contactors[J]. Journal of Industrial and Engineering Chemistry, 2021, 100: 174-185. |
46 | MOHAMMAD R K, MOHAMMAD A M, MOHAMMAD F, et al. Advances in carbon capture[M]. Woodhead Publishing, 2020: 151-170. |
47 | AGHEL B, HEIDARYAN E, SAHRAIE S, et al. Optimization of monoethanolamine for CO2 absorption in a microchannel reactor[J]. Journal of CO2 Utilization, 2018, 28: 264-273. |
48 | JANATI S, AGHEL B, SHADLOO M S. The effect of alkanolamine mixtures on CO2 absorption efficiency in T-Shaped microchannel[J]. Environmental Technology & Innovation, 2021, 24: 102006. |
49 | 郭正东, 苏梦军, 刘含笑, 等. 旋转填充床基础研究及工业应用进展[J]. 化工进展, 2018, 37(4): 1335-1346. |
GUO, Zhengdong, SU Mengjun, LIU Hanxiao, et al. States-of-the-arts progress on fundamental research and industrial applications of rotating packed bed[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1335-1346. | |
50 | 吴舒莹. 超重力反应器强化有机胺吸收剂CO2捕集性能研究[D]. 北京: 北京化工大学, 2018. |
WU Shuying. Study on CO2 capture performance using alkanolamine solvents in rotating packed bed[D]. Beijing: Beijing University of Chemical Technology, 2018. | |
51 | 盛淼蓬. 旋转填充床强化有机胺吸收剂脱除二氧化碳及其传质过程研究[D]. 北京: 北京化工大学, 2019. |
SHENG Miaopeng. Study on intensification on CO2 capture and its mass transfer process using rotating packed bed[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
52 | YU Cheng Hsiu, TAN Chung Sung. Mixed alkanolamines with low regeneration energy for CO2 capture in a rotating packed bed[J]. Energy Procedia, 2013, 37: 455-460. |
[1] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[2] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[3] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[4] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[5] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[6] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[7] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[8] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[11] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[12] | DENG Jian, WANG Kai, LUO Guangsheng. Development and consideration of adiabatic continuous microreaction technology for safe production of nitro compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3923-3925. |
[13] | LI Dong, WANG Qianqian, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of series stack of non-aqueous nano slurry thermally regenerative flow batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4238-4246. |
[14] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
[15] | LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |