Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (12): 6522-6530.DOI: 10.16085/j.issn.1000-6613.2022-0385
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
DAI Jingxin1(), SONG Wei1, CHEN Xiulai2, LIU Liming2, WU Jing1(
)
Received:
2022-03-13
Revised:
2022-04-28
Online:
2022-12-29
Published:
2022-12-20
Contact:
WU Jing
代静新1(), 宋伟1, 陈修来2, 刘立明2, 吴静1(
)
通讯作者:
吴静
作者简介:
代静新(1996—),男,硕士研究生,研究方向为制药工程。E-mail:1468763530@qq.com。
基金资助:
CLC Number:
DAI Jingxin, SONG Wei, CHEN Xiulai, LIU Liming, WU Jing. ZIF-8-glutaraldehyde-immobilized cells to produce α-ketoglutaric acid[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6522-6530.
代静新, 宋伟, 陈修来, 刘立明, 吴静. ZIF-8-戊二醛固定化细胞生产α-酮戊二酸[J]. 化工进展, 2022, 41(12): 6522-6530.
1 | FAN Xiangchen, CHEN Ruidong, CHEN Lele, et al. Enhancement of alpha-ketoglutaric acid production from L-glutamic acid by high-cell-density cultivation[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 126: 10-17. |
2 | WANG Yaping, RAO Ben, YAN Hong, et al. High-level expression of L-glutamate oxidase in Pichia pastoris using multi-copy expression strains and high cell density cultivation[J]. Protein Expression and Purification, 2017, 129: 108-114. |
3 | 宋辉, 张文宇, 王鹏举, 等. L-谷氨酸氧化酶与CBD的融合表达及其在微晶纤维素上固定化分析[J]. 生物工程学报, 2016, 32(10): 1348-1361. |
SONG Hui, ZHANG Wenyu, WANG Pengju, et al. Analysis of immobilized L-glutamate oxidase fused with cellulose binding domain on microcrystalline cellulose[J]. Chinese Journal of Biotechnology, 2016, 32(10): 1348-1361. | |
4 | 于爽, 迟乃玉, 张庆芳. L-谷氨酸氧化酶的研究进展[J]. 中国酿造, 2017, 36(10): 9-12. |
YU Shuang, CHI Naiyu, ZHANG Qingfang. Research progress on L-glutamate oxidase[J]. China Brewing, 2017, 36(10): 9-12. | |
5 | NIU Panqing, DONG Xiaoxiang, WANG Yuancai, et al. Enzymatic production of α-ketoglutaric acid from L-glutamic acid via L-glutamate oxidase[J]. Journal of Biotechnology, 2014, 179: 56-62. |
6 | LIU Qingdai, MA Xiaoqian, CHENG Haijiao, et al. Co-expression of L-glutamate oxidase and catalase in Escherichia coli to produce α-ketoglutaric acid by whole-cell biocatalyst[J]. Biotechnology Letters, 2017, 39(6): 913-919. |
7 | LU Yuchi, CHEN Yan, WANG Qingling, et al. Organic-inorganic hybrid nanocomposites: a novel way to immobilize L-glutamate oxidase with manganese phosphate[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(5): 1686-1694. |
8 | 夏欢, 卢滇楠, 戈钧, 等. 纳米结构酶催化剂研究进展[J]. 化工学报, 2021, 72(12): 6086-6092. |
XIA Huan, LU Diannan, GE Jun, et al. Advances in nanostructured enzyme catalysts[J]. CIESC Journal, 2021, 72(12): 6086-6092. | |
9 | 孙帆, 宿玲恰, 张康, 等. D-阿洛酮糖3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究[J]. 中国生物工程杂志, 2018, 38(7): 83-88. |
SUN Fan, SU Lingqia, ZHANG Kang, et al. D-psicose 3-epimerase gene overexpression in bacillus subtilis and immobilization of cells[J]. China Biotechnology, 2018, 38(7): 83-88. | |
10 | 高豪, 陆家声, 章文明, 等. 材料介导细胞固定化技术在生物发酵中的应用[J]. 化工进展, 2021, 40(7): 3923-3931. |
GAO Hao, LU Jiasheng, ZHANG Wenming, et al. Application of material-mediated cell immobilization technology in biological fermentation[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3923-3931. | |
11 | 彭春燕, 刘天翔, 高育慧, 等. 微生物固定化载体材料的最新研究进展[J]. 现代化工, 2021, 41(6): 55-59, 64. |
PENG Chunyan, LIU Tianxiang, GAO Yuhui, et al. Latest advances on carrier materials in microbial immobilization[J]. Modern Chemical Industry, 2021, 41(6): 55-59, 64. | |
12 | 陈孝鹏, 沈炜, 王亚军. 固定化细胞催化合成6-氰基-(3R, 5R)-二羟基己酸叔丁酯工艺研究[J]. 化学反应工程与工艺, 2017, 33(3): 236-242. |
CHEN Xiaopeng, SHEN Wei, WANG Yajun. Biocatalytic process of t-butyl 6-cyano-(3R, 5R)-dihydroxylhexanoate by immobilized cells[J]. Chemical Reaction Engineering and Technology, 2017, 33(3): 236-242. | |
13 | 李力, 王亚平, 饶犇, 等. 重组L-谷氨酸氧化酶固定化细胞的制备[J]. 湖北农业科学, 2019, 58(17): 132-135. |
LI Li, WANG Yaping, RAO Ben, et al. Preparation of recombinant L-glutamate oxidase immobilized cells[J]. Hubei Agricultural Sciences, 2019, 58(17): 132-135. | |
14 | SANTOS Jose Cleiton S dos, BARBOSA Oveimar, ORTIZ Claudia, et al. Importance of the support properties for immobilization or purification of enzymes[J]. ChemCatChem, 2015, 7(16): 2413-2432. |
15 | QIU Shuai, WANG Yajun, YU Han, et al. t-Butyl 6-cyano-(3R, 5R)-dihydroxyhexanoate synthesis via asymmetric reduction by immobilized cells of carbonyl reductase and glucose dehydrogenase co-expression E. coli [J]. Process Biochemistry, 2019, 80: 43-51. |
16 | SALIBA Daniel, AMMAR Manal, RAMMAL Moustafa, et al. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives[J]. Journal of the American Chemical Society, 2018, 140(5): 1812-1823. |
17 | MENG Jiashen, NIU Chaojiang, XU Linhan, et al. General oriented formation of carbon nanotubes from metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(24): 8212-8221. |
18 | THANH Mai Thi, THIEN Tran Vinh, DU Pham Dinh, et al. Iron doped zeolitic imidazolate framework (Fe-ZIF-8): synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8[J]. Journal of Porous Materials, 2018, 25(3): 857-869. |
19 | LI Wanbin, ZHANG Yufan, XU Zehai, et al. Assembly of MOF microcapsules with size-selective permeability on cell walls[J]. Angewandte Chemie International Edition, 2016, 55(3): 955-959. |
20 | HE Hongming, HAN Haobo, SHI Hui, et al. Construction of thermophilic lipase-embedded metal-organic frameworks via biomimetic mineralization: a biocatalyst for ester hydrolysis and kinetic resolution[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24517-24524. |
21 | LIAN Xizhen, FANG Yu, JOSEPH Elizabeth, et al. Enzyme-MOF (metal-organic framework) composites[J]. Chemical Society Reviews, 2017, 46(11): 3386-3401. |
22 | CHEN Guosheng, HUANG Siming, KOU Xiaoxue, et al. A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal–organic frameworks[J]. Angewandte Chemie International Edition, 2019, 58(5): 1463-1467. |
23 | SUN Chao, CHANG Lin, HOU Ke, et al. Encapsulation of live cells by metal-organic frameworks for viability protection[J]. Science China Materials, 2019, 62(6): 885-891. |
24 | WANG Yajun, CHEN Xiaopeng, SHEN Wei, et al. Chiral diol t-butyl 6-cyano-(3R, 5R)-dihydroxylhexanoate synthesis catalyzed by immobilized cells of carbonyl reductase and glucose dehydrogenase co-expression E. coli [J]. Biochemical Engineering Journal, 2017, 128: 54-62. |
25 | ZAJKOSKA Petra, ROSENBERG Michal, HEATH Rachel, et al. Immobilised whole-cell recombinant monoamine oxidase biocatalysis[J]. Applied Microbiology and Biotechnology, 2015, 99(3): 1229-1236. |
26 | 邹树平, 颜海蔚, 胡忠策, 等. 固定化重组大肠杆菌细胞催化合成(R)-环氧氯丙烷[J]. 现代化工, 2013, 33(7): 55-59. |
ZOU Shuping, YAN Haiwei, HU Zhongce, et al. Synthesis of (R)-epichlorohydrin catalyzed by immobilized recombinant escherichia coli cells[J]. Modern Chemical Industry, 2013, 33(7): 55-59. | |
27 | SINGH Rajendra, PANDEY Deepak, DEVI Neena, et al. Bench scale production of butyramide using free and immobilized cells of Bacillus sp. APB-6[J]. Bioprocess and Biosystems Engineering, 2018, 41(8): 1225-1232. |
28 | WU Jing, FAN Xiangchen, LIU Jia, et al. Promoter engineering of cascade biocatalysis for α-ketoglutaric acid production by coexpressing L-glutamate oxidase and catalase[J]. Applied Microbiology and Biotechnology, 2018, 102(11): 4755-4764. |
29 | HU Yingli, DAI Lingmei, LIU Dehua, et al. Rationally designing hydrophobic UiO-66 support for the enhanced enzymatic performance of immobilized lipase[J]. Green Chemistry, 2018, 20(19): 4500-4506. |
30 | NADAR Shamraja S, RATHOD Virendra K. Encapsulation of lipase within metal-organic framework (MOF) with enhanced activity intensified under ultrasound[J]. Enzyme and Microbial Technology, 2018, 108: 11-20. |
31 | 卓武燕, 邱艳, 翟好英. 罗丹明B分光光度法测定药物中微量锌[J]. 内江师范学院学报, 2011, 26(8): 51-53. |
ZHUO Wuyan, QIU Yan, ZHAI Haoying. Study on spectrophotometric determination of zinc(Ⅱ) in medicaments[J]. Journal of Neijiang Normal University, 2011, 26(8): 51-53. | |
32 | CHEN Guosheng, HUANG Siming, KOU Xiaoxue, et al. Embedding functional biomacromolecules within peptide-directed metal–organic framework (MOF) nanoarchitectures enables activity enhancement[J]. Angewandte Chemie International Edition, 2020, 59(33): 13947-13954. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[3] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[4] | LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892. |
[5] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[6] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[7] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[8] | ZHANG Yaodan, SUN Ruoxi, CHEN Pengcheng. Advances of multi-enzyme co-immobilization carrier based on cascade reactions [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3167-3176. |
[9] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[10] | YUE Xin, LI Chunying, SUN Dao’an, LI Jiangwei, DU Yongmei, MA Hui, LYU Jian. Progress on heterogeneous catalysts for cyclopropanation of diazo compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2390-2401. |
[11] | MAO Menglei, MENG Lingding, GAO Rui, MENG Zihui, LIU Wenfang. Research progress on enzyme immobilization on porous framework materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. |
[12] | LI Ling, MA Chaofeng, LU Chunshan, YU Wanjin, SHI Nengfu, JIN Jiamin, ZHANG Jianjun, LIU Wucan, LI Xiaonian. Progress on the synthesis of 1,1,2-trifluoroethene and the catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1822-1831. |
[13] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[14] | LI Yunchuang, XIE Fangming, XI Yanan, WAN Xinyue, SUN Yuhu, ZHAO Yongfeng, LI Gen, LIU Honghai, GAO Xionghou, LIU Hongtao. Low-cost synthesis of hydrothermally stable mesoporous aluminosilicates [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1877-1884. |
[15] | WANG Yuzhuo, LI Gang. S,N co-doped three-dimensional graphene for all-solid-state supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1974-1982. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 237
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 388
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |