Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (11): 5771-5782.DOI: 10.16085/j.issn.1000-6613.2022-0102
• Industrial catalysis • Previous Articles Next Articles
LI Qingyuan(), WANG Chao, XU Shipei, ZHANG Xueqin, QIU Mingjian, LIU Mengyao, CONG Mengxiao
Received:
2022-01-13
Revised:
2022-03-14
Online:
2022-11-28
Published:
2022-11-25
Contact:
LI Qingyuan
李庆远(), 王超, 许世佩, 张雪琴, 邱明建, 刘梦瑶, 丛梦晓
通讯作者:
李庆远
作者简介:
李庆远(1984—),男,博士,工程师,研究方向催化反应工程。E-mail:liqy0629@163.com。
CLC Number:
LI Qingyuan, WANG Chao, XU Shipei, ZHANG Xueqin, QIU Mingjian, LIU Mengyao, CONG Mengxiao. Research progress on reaction process and catalysts for PBS precursor of 1,4-butanediol synthesis[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5771-5782.
李庆远, 王超, 许世佩, 张雪琴, 邱明建, 刘梦瑶, 丛梦晓. PBS前体1,4-丁二醇合成的反应工艺和催化剂研究进展[J]. 化工进展, 2022, 41(11): 5771-5782.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0102
项目 | 化石基路线 | 生物基路线 |
---|---|---|
反应原料 | 来源于煤、石油、天然气等不可再生资源,部分原料在运输和储存方面具有一定的危险(如乙炔等) | 来源于生物质可再生资源,原料相对较为安全 |
工艺过程 | 反应条件较为苛刻,通常需要较高的温度和压力,反应能耗较高,工艺较为成熟,工业化装置运行以此为主 | 反应条件较为温和,处于起步期,大多数工艺都处于研究阶段,工业化运行装置较少 |
设备装置 | 需耐高温高压,部分反应过程对设备腐蚀较大,设备造价相对较高 | 大都为常压设备,无腐蚀现象,造价相对较低 |
反应产物 | 反应的转化率和产物的选择性相对较高 | 反应的转化率和产物的选择性相对较低 |
项目 | 化石基路线 | 生物基路线 |
---|---|---|
反应原料 | 来源于煤、石油、天然气等不可再生资源,部分原料在运输和储存方面具有一定的危险(如乙炔等) | 来源于生物质可再生资源,原料相对较为安全 |
工艺过程 | 反应条件较为苛刻,通常需要较高的温度和压力,反应能耗较高,工艺较为成熟,工业化装置运行以此为主 | 反应条件较为温和,处于起步期,大多数工艺都处于研究阶段,工业化运行装置较少 |
设备装置 | 需耐高温高压,部分反应过程对设备腐蚀较大,设备造价相对较高 | 大都为常压设备,无腐蚀现象,造价相对较低 |
反应产物 | 反应的转化率和产物的选择性相对较高 | 反应的转化率和产物的选择性相对较低 |
1 | NAZRIN A, SAPUAN S M, ZUHRI M Y M, et al. Nanocellulose reinforced thermoplastic starch (TPS), polylactic acid (PLA), and polybutylene succinate (PBS) for food packaging applications[J]. Frontiers in Chemistry, 2020, 8: 213. |
2 | GIGLI M, FABBRI M, LOTTI N, et al. Poly(butylene succinate)-based polyesters for biomedical applications: a review[J]. European Polymer Journal, 2016, 75: 431-460. |
3 | SIRACUSA V, LOTTI N, MUNARI A, et al. Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: gas barrier properties after stressed treatments[J]. Polymer Degradation and Stability, 2015, 119: 35-45. |
4 | CHENG J, LI J, ZHENG L G. Achievements and perspectives in 1, 4-butanediol production from engineered microorganisms[J]. Journal of Agricultural and Food Chemistry, 2021, 69(36): 10480-10485. |
5 | BURGARD A, BURK M J, OSTERHOUT R, et al. Development of a commercial scale process for production of 1,4-butanediol from sugar[J]. Current Opinion in Biotechnology, 2016, 42: 118-125. |
6 | YIM H, HASELBECK R, NIU W, et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol[J]. Nature Chemical Biology, 2011, 7(7): 445-452. |
7 | LIU H L, JIANG Y Y, ZHAO H Y, et al. Preparation of highly dispersed Cu catalysts from hydrotalcite precursor for the dehydrogenation of 1,4-butanediol[J]. Journal of Industrial and Engineering Chemistry, 2021, 102: 251-259. |
8 | 刘响, 廖启江, 张敏卿. 1,4-丁炔二醇加氢过程研究进展[J]. 化工进展, 2017, 36(8): 2787-2797. |
LIU Xiang, LIAO Qijiang, ZHANG Minqing. Research progress of 1,4-butynediol hydrogenation process[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2787-2797. | |
9 | TAMURA M, NAKAGAWA Y, TOMISHIGE K. Recent developments of heterogeneous catalysts for hydrogenation of caKrboxylic acids to their corresponding alcohols[J]. Asian Journal of Organic Chemistry, 2020, 9(2): 126-143. |
10 | MIKLÓSSY I, BODOR Z, SINKLER R, et al. In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered E. coli [J]. Journal of Biomolecular Structure and Dynamics, 2017, 35(9): 1874-1889. |
11 | VAN DIEN S. From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals[J]. Current Opinion in Biotechnology, 2013, 24(6): 1061-1068. |
12 | HAAS T, JAEGER B, WEBER R, et al. New diol processes: 1,3-propanediol and 1,4-butanediol[J]. Applied Catalysis A: General, 2005, 280(1): 83-88. |
13 | LUO P, LI X D. Application and market of 1,4-butanediol production of reppe method in China[J]. American Journal of Chemical Engineering, 2021, 9(2): 34-38. |
14 | 杨桂花, 王吉德, 徐世美, 等. 炔醛法合成1,4-丁炔二醇催化剂研究进展[J]. 材料导报, 2014, 28(19): 68-74. |
YANG Guihua, WANG Jide, XU Shimei, et al. Development in catalysts for synthesis of 1,4-butynediol via ethynylation reaction of formaldehyde[J]. Materials Review, 2014, 28(19): 68-74. | |
15 | 窦和瑞, 吕荣, 徐晓航, 等. 一种制备生物可降解塑料PBS的方法: CN112694602A[P]. 2021-04-23. |
DOU Herui, Rong LYU, XU Xiaohang, et al. Method for preparing biodegradable plastic PBS: CN112694602A[P]. 2021-04-23. | |
16 | 陈梁峰, 沈伟, 乔明华, 等. 一种用于马来酸二甲酯加氢制备 1, 4-丁二醇的催化剂的制备方法: CN1935375A[P]. 2007-03-28. |
CHEN Liangfeng, SHEN Wei, QIAO Minghua, et al. A method for preparing a catalyst for hydrogenation of 1,4-butanediol with dimethyl maleate: CN1935375A[P]. 2007-03-28. | |
17 | 王春梅, 苏杰, 范丹丹, 等. 一种用于制备 1,4-丁二醇的催化剂及制备方法: CN103801321A[P]. 2014-05-21. |
WANG Chunmei, SU Jie, FAN Dandan, et al. A catalyst for the preparation of 1,4-butanediol and a preparation method thereof: CN103801321A[P]. 2014-05-21. | |
18 | 郭平均, 杨菊群, 刘文艳, 等. 一种生产 1,4-丁二醇的高效铜锰铝催化剂的制备方法: CN103566945A[P]. 2014-02-12. |
GUO Pingjun, YANG Juqun, LIU Wenyan, et al. A preparation method for high efficiency copper manganese aluminum catalyst for producing 1,4-butanadiol: CN103566945A[P]. 2014-02-12. | |
19 | HONG U G, KIM J K, LEE J,et al. Conversion of succinic acid to 1,4-butanediol via dimethyl succinate over rhenium nano-catalyst supported on copper-containing mesoporous carbon[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(11): 8867-8872.. |
20 | CHEN L F, GUO P J, ZHU L J, et al. Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol[J]. Applied Catalysis A: General, 2009, 356(2): 129-136. |
21 | HUANG Z W, BARNETT K J, CHADA J P, et al. Hydrogenation of γ-butyrolactone to 1,4-butanediol over CuCo/TiO2 bimetallic catalysts[J]. ACS Catalysis, 2017, 7(12): 8429-8440. |
22 | BECKER R, BROCKER F J, KAIBEL G, et al. Process and catalysts for preparing 1,4-butanediol by the hydrogenation of 1,4 -butynediol: WO9815513A1[P].1998-04-16. |
23 | 王志钢,代俊桥,史振宇, 等. 一种马来酸二甲酯加氢催化剂的制备方法: CN110368947A[P]. 2019-10-25. |
24 | WANG C Z, TIAN Y N, WU R F, et al. Bimetallic synergy effects of phyllosilicate-derived NiCu@SiO2 catalysts for 1,4-butynediol direct hydrogenation to 1,4-butanediol[J]. ChemCatChem, 2019, 11(19): 4777-4787. |
25 | FANG Jie, ZHUANG Changjian, MENG Jipeng, et al. Selective hydrogenation of butyne-1,4-diol to butane-1,4-diol over Ni/Al2O3-SiO2 catalysts[J]. China Petroleum Processing & Petrochemical Technology, 2018, 20(4): 20-28. |
26 | WANG C Z, JIANG C Y, BAI J, et al. Effect of pore structures on 1,4-butynediol hydrogenation over mesoporous Ni/Al2O3-SiO2 catalysts[J]. Industrial & Engineering Chemistry Research, 2021, 60(49): 17840-17849. |
27 | 赵芳, 王长真, 田亚妮, 等. Ni-M/SiO2催化1,4-丁炔二醇加氢的金属助剂效应[J]. 分子催化, 2019, 33(1): 83-89. |
ZHAO Fang, WANG Changzhen, TIAN Yani, et al. Metal promoter effect of Ni-M/SiO2 in hydrogenation of 1,4-butynediol[J]. Journal of Molecular Catalysis (China), 2019, 33(1): 83-89. | |
28 | FRANCOVÁ D, TANCHOUX N, GÉRARDIN C, et al. Hydrogenation of 2-butyne-1,4-diol on supported Pd catalysts obtained from LDH precursors[J]. Microporous and Mesoporous Materials, 2007, 99(1/2): 118-125. |
29 | 郭家威, 张蕾, 南军, 等. 1,4-丁炔二醇温和条件下Pd-Ni基加氢催化剂的研究[J]. 厦门大学学报(自然科学版), 2019, 58(5): 661-668. |
GUO Jiawei, ZHANG Lei, Jun NAN, et al. Investigation on the Pd-Ni based catalysts for 1,4-butynediol hydrogenation under mild condition[J]. Journal of Xiamen University (Natural Science), 2019, 58(5): 661-668. | |
30 | YIN D D, LI C, REN H X, et al. Efficient Pd@MIL-101(Cr) hetero-catalysts for 2-butyne-1,4-diol hydrogenation exhibiting high selectivity[J]. RSC Advances, 2017, 7(3): 1626-1633. |
31 | CALCIO GAUDINO E, MANZOLI M, CARNAROGLIO D, et al. Sonochemical preparation of alumina-spheres loaded with Pd nanoparticles for 2-butyne-1,4-diol semi-hydrogenation in a continuous flow microwave reactor[J]. RSC Advances, 2018, 8(13): 7029-7039. |
32 | 石闯, 蒙龙伟, 陈霄, 等. 强静电吸附法制备PdZn x /Al2O3催化1,4-丁炔二醇选择加氢[J]. 精细化工, 2021, 38(10): 2072-2080. |
SHI Chuang, MENG Longwei, CHEN Xiao, et al. PdZnx/Al2O3 catalysts prepared by strong electrostatic adsorption for selective hydrogenation of 1,4-butynediol[J]. Fine Chemicals, 2021, 38(10): 2072-2080. | |
33 | 张瑞玉, 莫文龙. 1,4-丁炔二醇加氢制1,4-丁烯二醇工艺及催化剂研究进展[J]. 当代化工, 2021, 50(7): 1705-1710. |
ZHANG Ruiyu, MO Wenlong. Research progress of catalysts for hydrogenation of 1,4-butynediol to 1,4-butenediol[J]. Contemporary Chemical Industry, 2021, 50(7): 1705-1710. | |
34 | ZHANG M M, YANG Y B, LI C, et al. PVP-Pd@ZIF-8 as highly efficient and stable catalysts for selective hydrogenation of 1,4-butynediol[J]. Catalysis Science & Technology, 2014, 4(2): 329-332. |
35 | 任勇, 袁涛, 刘德蓉, 等. Pd-Cu/Fe3O4@C催化1,4-丁炔二醇选择性加氢的研究[J]. 化学研究与应用, 2017, 29(11): 1686-1692. |
REN Yong, YUAN Tao, LIU Derong, et al. Study on selective hydrogenation of 1,4-butynediol by Pd-Cu/Fe3O4@C catalyst[J]. Chemical Research and Application, 2017, 29(11): 1686-1692. | |
36 | RODE C V, TAYADE P R, NADGERI J M, et al. Continuous hydrogenation of 2-butyne-1,4-diol to 2-butene- and butane-1,4-diols[J]. Organic Process Research & Development, 2006, 10(2): 278-284. |
37 | LI C, ZHANG M M, DI X, et al. One-step synthesis of Pt@ZIF-8 catalyst for the selective hydrogenation of 1,4-butynediol to 1,4-butenediol[J]. Chinese Journal of Catalysis, 2016, 37(9): 1555-1561. |
38 | 任勇, 潘越, 刘德蓉, 等. Rh/UiO-66-NH2催化1,4-丁炔二醇加氢性能研究[J]. 应用化工, 2019, 48(1): 136-139, 144. |
REN Yong, PAN Yue, LIU Derong, et al. Study on the hydrogenation properties of 2-butyne-1,4-diol by Rh/UiO-66-NH2 catalyst[J]. Applied Chemical Industry, 2019, 48(1): 136-139, 144. | |
39 | GALLEZOT D. Conversion of biomass to selected chemical products[J]. Chemical Society Reviews, 2012, 41(4): 1538-1558. |
40 | BECHTHOLD I, BRETZ K, KABASCI S, et al. Succinic acid: a new platform chemical for biobased polymers from renewable resources[J]. Chemical Engineering & Technology, 2008, 31(5): 647-654. |
41 | WANG J J, ZENG A P, YUAN W Q. Succinic acid fermentation from agricultural wastes: the producing microorganisms and their engineering strategies[J]. Current Opinion in Environmental Science & Health, 2022: 100313. |
42 | CUKALOVIC A, STEVENS C V. Feasibility of production methods for succinic acid derivatives: a marriage of renewable resources and chemical technology[J]. Biofuels, Bioproducts and Biorefining, 2008, 2(6): 505-529. |
43 | COK B, TSIROPOULOS I, ROES A L, et al. Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy[J]. Biofuels, Bioproducts and Biorefining, 2014, 8(1): 16-29. |
44 | CHOI S, SONG C W, SHIN J H, et al. Biorefineries for the production of top building block chemicals and their derivatives[J]. Metabolic Engineering, 2015, 28: 223-239. |
45 | NGHIEM N, KLEFF S, SCHWEGMANN S. Succinic acid: technology development and commercialization[J]. Fermentation, 2017, 3(2): 26. |
46 | TAPIN B, EPRON F, ESPECEL C, et al. Study of monometallic Pd/TiO2 catalysts for the hydrogenation of succinic acid in aqueous phase[J]. ACS Catalysis, 2013, 3(10): 2327-2335. |
47 | HONG U G, KIM J K, LEE J, et al. Hydrogenation of succinic acid to tetrahydrofuran (THF) over ruthenium-carbon composite (Ru-C) catalyst[J]. Applied Catalysis A: General, 2014, 469: 466-471. |
48 | KANG K H, HONG U G, BANG Y J, et al. Hydrogenation of succinic acid to 1,4-butanediol over Re-Ru bimetallic catalysts supported on mesoporous carbon[J]. Applied Catalysis A: General, 2015, 490: 153-162. |
49 | SILVA R G C, FERREIRA T F, BORGES É R. Identification of potential technologies for 1,4-butanediol production using prospecting methodology[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(12): 3057-3070. |
50 | LI F B, LU T, CHEN B F, et al. Pt nanoparticles over TiO2-ZrO2 mixed oxide as multifunctional catalysts for an integrated conversion of furfural to 1,4-butanediol[J]. Applied Catalysis A: General, 2014, 478: 252-258. |
51 | DELHOMME C, WEUSTER-BOTZ D, KÜHN F E. Succinic acid from renewable resources as a C4 building-block chemical-a review of the catalytic possibilities in aqueous media[J]. Green Chemistry, 2009, 11(1): 13-26. |
52 | JI J C, XU Y, LIU Y, et al. A nanosheet Ru/WO3 catalyst for efficient conversion of glucose to butanediol[J]. Catalysis Communications, 2020, 144: 106074. |
53 | LI K T, LI Y S. Hydrogenolysis of succinic acid over Ru and Pd catalysts encapsulated in porous silica nanoparticles[J]. Clean Technologies and Environmental Policy, 2021, 23(7): 2171-2182. |
54 | TAPIN B, KHANH LY B, CANAFF C, et al. Characterization by X-ray absorption spectroscopy of bimetallic Re-Pd/TiO2 catalysts efficient for selective aqueous-phase hydrogenation of succinic acid to 1,4-butanediol[J]. Materials Chemistry and Physics, 2020, 252: 123225. |
55 | KANG K H, HAN S J, LEE J W, et al. Effect of boron content on 1,4-butanediol production by hydrogenation of succinic acid over Re-Ru/BMC (boron-modified mesoporous carbon) catalysts[J]. Applied Catalysis A: General, 2016, 524: 206-213. |
56 | KANG K H, HONG U G, JUN J O, et al. Hydrogenation of succinic acid to γ-butyrolactone and 1,4-butanediol over mesoporous rhenium-copper-carbon composite catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2014, 395: 234-242. |
57 | LANGE J P, WADMAN S H. Furfural to 1,4-butanediol/tetrahydrofuran-A detailed catalyst and process design[J]. ChemSusChem, 2020, 13(19): 5329-5337. |
58 | LEE Y, KIM Y T, KWON E E, et al. Biochar as a catalytic material for the production of 1,4-butanediol and tetrahydrofuran from furan[J]. Environmental Research, 2020, 184: 109325. |
59 | WANG T M, LIU S B, TAMURA M, et al. One-pot catalytic selective synthesis of 1,4-butanediol from 1,4-anhydroerythritol and hydrogen[J]. Green Chemistry, 2018, 20(11): 2547-2557. |
60 | WANG T M, TAMURA M, NAKAGAWA Y, et al. Preparation of highly active monometallic rhenium catalysts for selective synthesis of 1,4-butanediol from 1,4-anhydroerythritol[J]. ChemSusChem, 2019, 12(15): 3615-3626. |
61 | WANG T M, NAKAGAWA Y, TAMURA M, et al. Tungsten-zirconia-supported rhenium catalyst combined with a deoxydehydration catalyst for the one-pot synthesis of 1,4-butanediol from 1,4-anhydroerythritol[J]. Reaction Chemistry & Engineering, 2020, 5(7): 1237-1250. |
62 | BAIDYA P K, SARKAR U, VILLA R, et al. Liquid-phase hydrogenation of bio-refined succinic acid to 1,4-butanediol using bimetallic catalysts[J]. BMC Chemical Engineering, 2019, 1: 10. |
63 | VARDON D R, SETTLE A E, VOROTNIKOV V, et al. Ru-Sn/AC for the aqueous-phase reduction of succinic acid to 1,4-butanediol under continuous process conditions[J]. ACS Catalysis, 2017, 7(9): 6207-6219. |
64 | Shell Oil Company. Process for the production of n-butanol and 1,4-butanediol from furan: US20170349515A1[P]. 2017-12-07. |
65 | LE S D, NISHIMURA S. Highly selective synthesis of 1,4-butanediol via hydrogenation of succinic acid with supported Cu-Pd alloy nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18483-18492. |
66 | LIU H W, LU T. Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli [J]. Metabolic Engineering, 2015, 29: 135-141. |
67 | TAI Y S, XIONG M, JAMBUNATHAN P, et al. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products[J]. Nature Chemical Biology, 2016, 12(4): 247-253. |
68 | WANG J, JAIN R, SHEN X L, et al. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose[J]. Metabolic Engineering, 2017, 40: 148-156. |
69 | DAI L, TAO F, TANG H Z, et al. Directing enzyme devolution for biosynthesis of alkanols and 1, n-alkanediols from natural polyhydroxy compounds[J]. Metabolic Engineering, 2017, 44: 70-80. |
70 | DAI L, TAI C, SHEN Y L, et al. Biosynthesis of 1,4-butanediol from erythritol using whole-cell catalysis[J]. Biocatalysis and Biotransformation, 2019, 37(2): 92-96. |
71 | FORTE A, ZUCARO A, BASOSI R, et al. LCA of 1,4-butanediol produced via direct fermentation of sugars from wheat straw feedstock within a territorial biorefinery[J]. Materials (Basel, Switzerland), 2016, 9(7): 563. |
72 | SATAM C C, DAUB M, REALFF M J. Techno-economic analysis of 1,4-butanediol production by a single-step bioconversion process[J]. Biofuels, Bioproducts and Biorefining, 2019, 13(5): 1261-1273. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |