Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (11): 5695-5708.DOI: 10.16085/j.issn.1000-6613.2022-1209
• Invited review • Previous Articles Next Articles
HUANG Sheng1(), WANG Jingyu1, GUO Pei1, LI Zhenyu2()
Received:
2022-06-28
Revised:
2022-08-11
Online:
2022-11-28
Published:
2022-11-25
Contact:
LI Zhenyu
通讯作者:
李振宇
作者简介:
黄晟(1975—),男,研究员,博士生导师,化学工程硕士,公共管理博士,现主要从事环境与化工发展战略、科技教育政策研究工作。E-mail:huangsh@ysu.edu.cn。
CLC Number:
HUANG Sheng, WANG Jingyu, GUO Pei, LI Zhenyu. Short-term strategy and long-term prospect of energy structure optimization under carbon neutrality target[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708.
黄晟, 王静宇, 郭沛, 李振宇. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695-5708.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1209
排放行业 | 碳排放量/106t | 占比/% |
---|---|---|
电力、热力的生产和供应业 | 4641.96 | 47.39 |
黑色金属冶炼和压延加工业 | 1853.10 | 18.92 |
非金属矿物制品业 | 1111.84 | 11.35 |
交通运输、仓储和邮政业 | 732.48 | 7.48 |
城镇排放 | 271.69 | 2.77 |
石油、煤炭及其他燃料加工业 | 171.61 | 1.75 |
化学原料及化学制品制造业 | 163.75 | 1.67 |
农村排放 | 154.48 | 1.58 |
其他 | 153.30 | 1.57 |
排放行业 | 碳排放量/106t | 占比/% |
---|---|---|
电力、热力的生产和供应业 | 4641.96 | 47.39 |
黑色金属冶炼和压延加工业 | 1853.10 | 18.92 |
非金属矿物制品业 | 1111.84 | 11.35 |
交通运输、仓储和邮政业 | 732.48 | 7.48 |
城镇排放 | 271.69 | 2.77 |
石油、煤炭及其他燃料加工业 | 171.61 | 1.75 |
化学原料及化学制品制造业 | 163.75 | 1.67 |
农村排放 | 154.48 | 1.58 |
其他 | 153.30 | 1.57 |
国家/ 地区 | 石油 | 天然气 | 煤 | 核能 | 水电 | 再生能源① | 总计 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
消费量 /1018J | 占比/% | 消费量 /1018J | 占比/% | 消费量 /1018J | 占比/% | 消费量 /1018J | 占比/% | 消费量 /1018J | 占比/% | 消费量 /1018J | 占比/% | 消费量 /1018J | |
欧盟 | 20.03 | 35.94 | 13.68 | 24.54 | 5.91 | 10.60 | 6.11 | 10.96 | 3.04 | 5.45 | 6.97 | 12.50 | 55.74 |
美国 | 32.54 | 37.06 | 29.95 | 34.12 | 9.20 | 10.48 | 7.39 | 8.41 | 2.56 | 2.92 | 6.15 | 7.00 | 87.79 |
中国 | 31.00 | 20.50 | 12.97 | 6.58 | 84.04 | 55.58 | 3.53 | 2.34 | 11.77 | 7.78 | 7.89 | 5.22 | 151.15 |
全球 | 174.20 | 31.27 | 137.62 | 24.70 | 151.42 | 37.18 | 23.98 | 4.30 | 38.16 | 6.85 | 31.71 | 5.69 | 557.10 |
国家/ 地区 | 石油 | 天然气 | 煤 | 核能 | 水电 | 再生能源① | 总计 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
消费量 /1018J | 占比/% | 消费量 /1018J | 占比/% | 消费量 /1018J | 占比/% | 消费量 /1018J | 占比/% | 消费量 /1018J | 占比/% | 消费量 /1018J | 占比/% | 消费量 /1018J | |
欧盟 | 20.03 | 35.94 | 13.68 | 24.54 | 5.91 | 10.60 | 6.11 | 10.96 | 3.04 | 5.45 | 6.97 | 12.50 | 55.74 |
美国 | 32.54 | 37.06 | 29.95 | 34.12 | 9.20 | 10.48 | 7.39 | 8.41 | 2.56 | 2.92 | 6.15 | 7.00 | 87.79 |
中国 | 31.00 | 20.50 | 12.97 | 6.58 | 84.04 | 55.58 | 3.53 | 2.34 | 11.77 | 7.78 | 7.89 | 5.22 | 151.15 |
全球 | 174.20 | 31.27 | 137.62 | 24.70 | 151.42 | 37.18 | 23.98 | 4.30 | 38.16 | 6.85 | 31.71 | 5.69 | 557.10 |
国家/ 地区 | 石油 | 天然气 | 煤 | 核能 | 再生能源 | 其他① | 总计 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
发电量 /109kWh | 占比/% | 发电量 /109kWh | 占比/% | 发电量 /109kWh | 占比/% | 发电量 /109kWh | 占比/% | 发电量 /109kWh | 占比/% | 发电量 /109kWh | 占比/% | 发电量 /109kWh | |
美国 | 18.81 | 0.44 | 1738.44 | 40.56 | 844.07 | 19.69 | 831.49 | 19.40 | 840.39 | 19.60 | 13.38 | 0.31 | 4286.58 |
中国 | 15.66 | 0.19 | 346.84 | 4.30 | 5043.68 | 62.59 | 397.64 | 4.93 | 2198.47 | 27.28 | 56.56 | 0.70 | 8058.85 |
欧盟 | 42.66 | 1.54 | 552.93 | 19.96 | 373.43 | 13.48 | 687.93 | 24.83 | 1052.40 | 37.98 | 61.22 | 2.21 | 2770.56 |
全球 | 758.03 | 2.83 | 6268.08 | 23.37 | 9421.40 | 35.12 | 2700.10 | 10.07 | 7443.81 | 27.75 | 231.83 | 0.86 | 26823.25 |
国家/ 地区 | 石油 | 天然气 | 煤 | 核能 | 再生能源 | 其他① | 总计 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
发电量 /109kWh | 占比/% | 发电量 /109kWh | 占比/% | 发电量 /109kWh | 占比/% | 发电量 /109kWh | 占比/% | 发电量 /109kWh | 占比/% | 发电量 /109kWh | 占比/% | 发电量 /109kWh | |
美国 | 18.81 | 0.44 | 1738.44 | 40.56 | 844.07 | 19.69 | 831.49 | 19.40 | 840.39 | 19.60 | 13.38 | 0.31 | 4286.58 |
中国 | 15.66 | 0.19 | 346.84 | 4.30 | 5043.68 | 62.59 | 397.64 | 4.93 | 2198.47 | 27.28 | 56.56 | 0.70 | 8058.85 |
欧盟 | 42.66 | 1.54 | 552.93 | 19.96 | 373.43 | 13.48 | 687.93 | 24.83 | 1052.40 | 37.98 | 61.22 | 2.21 | 2770.56 |
全球 | 758.03 | 2.83 | 6268.08 | 23.37 | 9421.40 | 35.12 | 2700.10 | 10.07 | 7443.81 | 27.75 | 231.83 | 0.86 | 26823.25 |
能源 | 利用方式 | 原料消耗或转化能耗 | 直接能量转化效率/% | 耗水(废水)量/t·t-1 | 生产过程CO2排放量 /t·t-1 | 能量主要 利用形式 | 最终能量 转换效率/% |
---|---|---|---|---|---|---|---|
煤 | 燃煤发电 | 0.278kg/kWh | 44① | — | 0.25kg/MJ | 电动机② | 30~35 |
煤制天然气 | 2.3t标煤/km3 | 52 | 7t/km3 | 0.14kg/MJ | 民用气③ | 约27 | |
煤间接液化 | 3.5t标煤/t | 42 | 11 | 8 | 内燃机④ | 约17 | |
煤制烯烃 | 5.7t标煤/t | — | 22 | 11 | — | ||
石油 | 石油生产汽油、柴油 | 63kg标油/t | 94 | 0.5 | 0.33 | 内燃机④ | 约38 |
石脑油制烯烃 | 550kg标油/t | — | 3.5~4.5 | 1~2 | — | — | |
天然气 | 开采天然气作燃料 | — | — | — | — | 民用气 | 50~55 |
能源 | 利用方式 | 原料消耗或转化能耗 | 直接能量转化效率/% | 耗水(废水)量/t·t-1 | 生产过程CO2排放量 /t·t-1 | 能量主要 利用形式 | 最终能量 转换效率/% |
---|---|---|---|---|---|---|---|
煤 | 燃煤发电 | 0.278kg/kWh | 44① | — | 0.25kg/MJ | 电动机② | 30~35 |
煤制天然气 | 2.3t标煤/km3 | 52 | 7t/km3 | 0.14kg/MJ | 民用气③ | 约27 | |
煤间接液化 | 3.5t标煤/t | 42 | 11 | 8 | 内燃机④ | 约17 | |
煤制烯烃 | 5.7t标煤/t | — | 22 | 11 | — | ||
石油 | 石油生产汽油、柴油 | 63kg标油/t | 94 | 0.5 | 0.33 | 内燃机④ | 约38 |
石脑油制烯烃 | 550kg标油/t | — | 3.5~4.5 | 1~2 | — | — | |
天然气 | 开采天然气作燃料 | — | — | — | — | 民用气 | 50~55 |
产品 | 产量/万吨 | 进口量 /万吨 | 出口量 /万吨 | 表观消费量 /万吨 | 自给率/% |
---|---|---|---|---|---|
纯苯 | 1041.97 | 209.79 | 0.31 | 1251.45 | 83.26 |
聚乙烯 | 2032 | 1853.64 | 25.23 | 3860.41 | 52.64 |
聚丙烯 | 2581.59 | 450.46 | 36.35 | 2995.70 | 86.18 |
聚苯乙烯 | 292.00 | 135.99 | 21.18 | 406.81 | 71.78 |
聚氯乙烯 | 2074.00 | 118.68 | 86.02 | 2106.66 | 98.45 |
合成橡胶 | 751.32 | 512.81 | 38.27 | 1225.86 | 61.29 |
产品 | 产量/万吨 | 进口量 /万吨 | 出口量 /万吨 | 表观消费量 /万吨 | 自给率/% |
---|---|---|---|---|---|
纯苯 | 1041.97 | 209.79 | 0.31 | 1251.45 | 83.26 |
聚乙烯 | 2032 | 1853.64 | 25.23 | 3860.41 | 52.64 |
聚丙烯 | 2581.59 | 450.46 | 36.35 | 2995.70 | 86.18 |
聚苯乙烯 | 292.00 | 135.99 | 21.18 | 406.81 | 71.78 |
聚氯乙烯 | 2074.00 | 118.68 | 86.02 | 2106.66 | 98.45 |
合成橡胶 | 751.32 | 512.81 | 38.27 | 1225.86 | 61.29 |
1 | BP. Statistical review of world energy[R]. London: British Petroleum, 2021. |
2 | IEA. World Energy Outlook 2021[R]. Paris: IEA, 2021. |
3 | 中国碳核算数据库(CEADs)[EB/OL].[2022-05-18]. . |
China Carbon Accounting Database[EB/OL].[2022-05-18]. . | |
4 | 邹才能, 熊波, 薛华庆, 等. 新能源在碳中和中的地位与作用[J]. 石油勘探与开发, 2021, 48(2): 411-420. |
ZOU Caineng, XIONG Bo, XUE Huaqing, et al. The role of new energy in carbon neutral[J]. Petroleum Exploration and Development, 2021, 48(2): 411-420. | |
5 | 国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社, 2021: 286-288. |
National Bureau of Statistics. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2021: 286-288. | |
6 | 国家统计局. 电力平衡表[EB/OL]. [2022-05-21]. . |
National Bureau of Statistics. Electricity balance sheet[EB/OL]. [2022-05-21]. . | |
7 | 江思羽. 碳中和目标下的欧盟能源气候政策与中欧合作[J]. 国际经济评论, 2022(1): 134-154. |
JIANG Siyu. EU’s energy-climate policy under the carbon neutrality target and China-EU cooperation[J]. International Economic Review, 2022(1): 134-154. | |
8 | Energy Department US. Hydrogen shot[EB/OL]. [2022-05-16]. . |
9 | Energy Department US. DOE invests $61 million in advanced nuclear energy R&D projects across America[EB/OL]. [2022-05-16]. . |
10 | Energy Department US. DOE awards nearly $40 million for grid decarbonizing solar technologies[EB/OL]. [2022-05-17]. . |
11 | Energy Department US. Biden-Harris administration announces over $ 2.3 billion investment to cut U.S. carbon pollution[EB/OL]. [2022-05-17]. . |
12 | Commission European. A European Green Deal[EB/OL]. [2022-05-14]. . |
13 | Commission European. European Climate Law[EB/OL]. [2022-05-15]. . |
14 | Commission European. Delivering the European Green Deal[EB/OL]. [2022-05-15]. . |
15 | Commission European. Powering a Climate-neutral Economy: an EU Strategy for Energy System Integration[EB/OL]. [2022-05-15]. . |
16 | Commission European. A hydrogen strategy for a climate-neutral Europe[EB/OL]. [2022-05-15]. . |
17 | Commission European. An EU strategy to harness the potential of offshore renewable energy for a climate neutral future[EB/OL]. [2022-05-15]. . |
18 | 李晓依, 许英明, 肖新艳. 俄乌冲突背景下国际石油贸易格局演变趋势及中国应对[J]. 国际经济合作, 2022(3): 10-18. |
LI Xiaoyi, XU Yingming, XIAO Xinyan. Evolution trend of global oil trade pattern under Russia-Ukraine conflict and China’s countermeasures[J]. Journal of International Economic Cooperation, 2022(3): 10-18. | |
19 | 鲁嘉华, 张志英. 新能源与节能技术[M]. 北京:清华大学出版社, 2013. |
LU Jiahua, ZHANG Zhiying. New energy and energy saving technology[M]. Beijing: Tsinghua University Press, 2013. | |
20 | 李振宇, 黄格省. 推动我国能源生产革命的途径分析[J]. 化工进展, 2015, 34(10): 3521-3529. |
LI Zhenyu, HUANG Gesheng. Analysis on ways to promote energy production revolution in China[J]. Chemical Industry and Engineering Progress, 2015, 34(10): 3521-3529. | |
21 | 周淑慧, 王军, 梁严. 碳中和背景下中国“十四五”天然气行业发展[J]. 天然气工业, 2021, 41(2): 171-182. |
ZHOU Shuhui, WANG Jun, LIANG Yan. Development of China’s natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality[J]. Natural Gas Industry, 2021, 41(2): 171-182. | |
22 | 邹才能, 马锋, 潘松圻, 等. 论地球能源演化与人类发展及碳中和战略[J]. 石油勘探与开发, 2022, 49(2): 411-428. |
ZOU Caineng, MA Feng, PAN Songqi, et al. Earth energy evolution, human development and carbon neutral strategy[J]. Petroleum Exploration and Development, 2022, 49(2): 411-428. | |
23 | 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(7): 2197-2211. |
XIE Heping, REN Shihua, XIE Yachen, et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society, 2021, 46(7): 2197-2211. | |
24 | 黄晟, 王静宇, 李振宇. 碳中和目标下石油与化学工业绿色低碳发展路径分析[J]. 化工进展, 2022, 41(4): 1689-1703. |
HUANG Sheng, WANG Jingyu, LI Zhenyu. Analysis of green and low-carbon development path of petroleum and chemical industry under the goal of carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1689-1703. | |
25 | 叶林敏, 黄乐乐, 段新平, 等. 煤经合成气制可降解聚乙醇酸的技术进展[J]. 洁净煤技术, 2022, 28(1): 110-121. |
YE Linmin, HUANG Lele, DUAN Xinping, et al. Progress in the synthesis of degradable polyglycolic acid from coal via syngas[J]. Clean Coal Technology, 2022, 28(1): 110-121. | |
26 | 张晨曦, 魏飞, 王垚, 等. 合成气一步法制芳烃的多级流化床反应器及反应循环系统: CN110624483A[P]. 2019-12-31. |
ZHANG Chenxi, WEI Fei, WANG Yao, et al. Multi-stage fluidized bed reactor and reaction cycle system for one-step aromatics production from syngas: CN110624483A[P]. 2019-12-31. | |
27 | 吕清刚, 柴祯. “双碳”目标下的化石能源高效清洁利用[J]. 中国科学院院刊, 2022, 37(4): 541-548. |
Qinggang LYU, CHAI Zhen. Highly efficient and clean utilization of fossil energy under carbon peak and neutrality targets[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 541-548. | |
28 | 甘凤丽, 江霞, 常玉龙, 等. 石化行业碳中和技术路径探索[J]. 化工进展, 2022, 41(3): 1364-1375. |
GAN Fengli, JIANG Xia, CHANG Yulong, et al. Exploration of carbon neutral technology path in petrochemical industry[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1364-1375. | |
29 | 范思强, 乔楠森, 王涛, 等. 加氢裂化技术助力石化产业炼化一体化[J]. 炼油技术与工程, 2022, 52(2): 7-12. |
FAN Siqiang, QIAO Nansen, WANG Tao, et al. Hydrocracking technology promotes refining-petrochemical integration of petrochemical industry[J]. Petroleum Refinery and Engineering, 2022, 52(2): 7-12. | |
30 | 浙江石油化工有限公司. 产品结构[EB/OL]. [2022-06-21]. . |
Zhejiang Petrochemical Co. Product structure[EB/OL]. [2022-06-21]. . | |
31 | 中国石油化工集团有限公司年鉴[M]. 中国石油化工集团有限公司, 2020. |
China Petrochemical Corporation Yearbook[M]. China Petrochemical Corporation, 2020. | |
32 | 邹才能,赵群,陈建军,等. 中国天然气发展态势及战略预判[J]. 天然气工业, 2018, 38(4): 1-11. |
ZOU Caineng, ZHAO Qun, CHEN Jianjun, et al. Natural gas in China: development trend and strategic forecast[J]. Natural Gas Industry, 2018, 38(4): 1-11. | |
33 | 谭天伟, 陈必强, 张会丽, 等. 加快推进绿色生物制造 助力实现“碳中和”[J]. 化工进展, 2021, 40(3): 1137-1141. |
TIAN Tianwei, CHEN Biqiang, ZHANG Huili, et al. Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1137-1141. | |
34 | 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)——中国CCUS路径研究[R]. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心, 2021. |
CAI Bofeng, LI Qi, ZHANG Xian, et al. China carbon dioxide capture, utilization and storage (CCUS) annual report (2021)—China CCUS pathway study[R]. Institute of Environmental Planning, Ministry of Ecology and Environment, Wuhan Institute of Geotechnics, Chinese Academy of Sciences, China Center for Agenda 21 Management, 2021. | |
35 | 郑琼, 江丽霞, 徐玉杰, 等. 碳达峰、碳中和背景下储能技术研究进展与发展建议[J]. 中国科学院院刊, 2022, 37(4): 529-540. |
ZHENG Qiong, JIANG Lixia, XU Yujie, et al. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 529-540. | |
36 | 陆王琳, 陆启亮, 张志洪. 碳中和背景下综合智慧能源发展趋势[J]. 动力工程学报, 2022, 42(1): 10-18. |
LU Wanglin, LU Qiliang, ZHANG Zhihong. An overview of the integrated energy systems’ development under the background of carbon neutralization[J]. Journal of Chinese Society of Power Engineering, 2022, 42(1): 10-18. |
[1] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[2] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[3] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[4] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[5] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[6] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[7] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[8] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[9] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[10] | LING Shan, LIU Juming, ZHANG Qiancheng, LI Yan. Research progress on simulated moving bed separation process and its optimization methods [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244. |
[11] | ZHU Hao, LIU Hanfei, GAO Yuan, BAI Rongrong, NI Songbo, HUANG Yiping, LI Qingtong, LI Xiaodong, HAN Weiqing. Parameter optimization of jet aeration in catalytic ozonation system and analysis of stage oxidation of phenol [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2717-2723. |
[12] | WANG Dong, YU Pinhua, CHEN Bin, XIAO Ang, CHEN Feng, JIANG Yangyang. Energy saving optimization of cyclohexane three-effect distillation in cyclohexanone production [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2245-2251. |
[13] | MA Runmei, YANG Haichao, LI Zhengda, LI Shuangxi, ZHAO Xiang, ZHANG Guoqing. Influence analysis of coating on deformation and frictional wear of mechanical seal end for high-speed bearing cavity [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1688-1697. |
[14] | LIU Guangping, LU Zhenneng, GONG Yulie. Dynamic response and disturbance optimization of high temperature heat pump steam systems [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1719-1727. |
[15] | CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |