Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (10): 5297-5305.DOI: 10.16085/j.issn.1000-6613.2021-2398
• Energy processes and technology • Previous Articles Next Articles
SUN Zhiwei(), WU Lianying(), HU Yangdong, ZHANG Weitao
Received:
2021-11-23
Revised:
2022-05-23
Online:
2022-10-21
Published:
2022-10-20
Contact:
WU Lianying
通讯作者:
伍联营
作者简介:
孙志伟(1997—),男,硕士研究生,研究方向为化学过程系统工程。E-mail:sunzhiwei@stu.ouc.edu.cn。
基金资助:
CLC Number:
SUN Zhiwei, WU Lianying, HU Yangdong, ZHANG Weitao. Application status of renewable energy in chemical production and its utilities system[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5297-5305.
孙志伟, 伍联营, 胡仰栋, 张伟涛. 可再生能源在化工生产及其公用工程系统中的应用[J]. 化工进展, 2022, 41(10): 5297-5305.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2398
方案 | 光伏发电制氢 | 风力发电制氢 | 水力发电制氢 | 生物质发电制氢 |
---|---|---|---|---|
优势 | ①产品氢成本较低;②工艺简单,便于模块化运行;③能够作为储存介质存储太阳能 | ①有效利用风力产电,减少风电波动;②能够作为储存介质存储风能;③有助于实现氢能的综合利用 | ①有助于解决水电弃能问题;②经济效益更好;③有助于减少发电及消费期碳排放 | ①在小规模存储供应氢气方面优势明显;②生物质能丰富,分布地区广,灵活性较高 |
缺陷 | ①发电核心技术有待进一步突破;②区域限制性强 | ①区域限制会加大氢能存储运输成本;②风电间歇性、波动性较强 | ①区域限制性强;②该方向研究应用较少 | ①该方向经济-技术评估水平不足;②生物质发电工艺不成熟 |
发展方向 | ①以点带面,进行示范项目布局规划探索;②突破核心技术,降低成本 | ①探索海上风力发电与制氢工艺耦合情况可行性;②改进技术,降低成本 | ①完善水电制氢产业链;②在水电资源优势地区协调制氢产业同步发展 | ①降低生物质储运成本; ②改善生物质发电技术 |
方案 | 光伏发电制氢 | 风力发电制氢 | 水力发电制氢 | 生物质发电制氢 |
---|---|---|---|---|
优势 | ①产品氢成本较低;②工艺简单,便于模块化运行;③能够作为储存介质存储太阳能 | ①有效利用风力产电,减少风电波动;②能够作为储存介质存储风能;③有助于实现氢能的综合利用 | ①有助于解决水电弃能问题;②经济效益更好;③有助于减少发电及消费期碳排放 | ①在小规模存储供应氢气方面优势明显;②生物质能丰富,分布地区广,灵活性较高 |
缺陷 | ①发电核心技术有待进一步突破;②区域限制性强 | ①区域限制会加大氢能存储运输成本;②风电间歇性、波动性较强 | ①区域限制性强;②该方向研究应用较少 | ①该方向经济-技术评估水平不足;②生物质发电工艺不成熟 |
发展方向 | ①以点带面,进行示范项目布局规划探索;②突破核心技术,降低成本 | ①探索海上风力发电与制氢工艺耦合情况可行性;②改进技术,降低成本 | ①完善水电制氢产业链;②在水电资源优势地区协调制氢产业同步发展 | ①降低生物质储运成本; ②改善生物质发电技术 |
1 | 贾斌广, 刘芳, 王达, 等. 扰流板太阳能空气集热器的流道优化[J]. 化工进展, 2019, 38(2): 819-825. |
JIA Binguang, LIU Fang, WANG Da, et al. Optimization of flow path for the spoiler solar air collector[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 819-825. | |
2 | 胡旺盛, 张少杰, 张昌建, 等. 相变式U形管太阳能集热器性能[J]. 化工进展, 2021, 40(2): 771-777. |
HU Wangsheng, ZHANG Shaojie, ZHANG Changjian, et al. Performance of U-tube solar collector with phase change materials[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 771-777. | |
3 | SURESH N S, RAO B S. Solar energy for process heating: a case study of select Indian industries[J]. Journal of Cleaner Production, 2017, 151: 439-451. |
4 | LIU Qibin, JIN Hongguang, HONG Hui, et al. Performance analysis of a mid- and low-temperature solar receiver/reactor for hydrogen production with methanol steam reforming[J]. International Journal of Energy Research, 2011, 35(1): 52-60. |
5 | BAI Xianhua, LI Sipu, ZHANG Yufan, et al. Solar-heating thermocatalytic H2 production from formic acid by a MoS2-graphene-nickel foam composite[J]. Green Chemistry, 2021, 23(19): 7630-7634. |
6 | 王沣浩, 蔡皖龙, 王铭, 等. 地热能供热技术研究现状及展望[J]. 制冷学报, 2021, 42(1): 14-22. |
WANG Fenghao, CAI Wanlong, WANG Ming, et al. Status and outlook for research on geothermal heating technology[J]. Journal of Refrigeration, 2021, 42(1): 14-22. | |
7 | ØSTERGAARD P A, LUND H. A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating[J]. Applied Energy, 2011, 88(2): 479-487. |
8 | 马伟斌, 龚宇烈, 赵黛青, 等. 我国地热能开发利用现状与发展[J]. 中国科学院院刊, 2016, 31(2): 199-207. |
MA Weibin, GONG Yulie, ZHAO Daiqing, et al. Geothermal energy exploitation, utilization, and its development trend in China[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(2): 199-207. | |
9 | 周总瑛, 刘世良, 刘金侠. 中国地热资源特点与发展对策[J]. 自然资源学报, 2015, 30(7): 1210-1221. |
ZHOU Zongying, LIU Shiliang, LIU Jinxia. Study on the characteristics and development strategies of geothermal resources in China[J]. Journal of Natural Resources, 2015, 30(7): 1210-1221. | |
10 | SEBESTYÉN T T, PAVIČEVIĆ M, DOROTIĆ H, et al. The establishment of a micro-scale heat market using a biomass-fired district heating system[J]. Energy, Sustainability and Society, 2020, 10: 25. |
11 | 陈晓红, 王智勇, 毛天宇. 生物质成型燃料产业现状与发展前景[J]. 中国资源综合利用, 2018, 36(6): 83-85. |
CHEN Xiaohong, WANG Zhiyong, MAO Tianyu. Present situation and development prospect of biomass briquetting fuel industry[J]. China Resources Comprehensive Utilization, 2018, 36(6): 83-85. | |
12 | 白阳, 闫文刚, 刘志刚. 生物质燃料致密成型方式的发展现状与展望[J]. 林业机械与木工设备, 2018, 46(9): 10-15. |
BAI Yang, YAN Wengang, LIU Zhigang. Development status and prospects of biomass briquette fuel dense molding method[J]. Forestry Machinery & Woodworking Equipment, 2018, 46(9): 10-15. | |
13 | 张世鑫, 陈明光, 吴陈亮, 等. 生物质利用技术进展[J]. 中国资源综合利用, 2019, 37(4): 79-85. |
ZHANG Shixin, CHEN Mingguang, WU Chenliang, et al. Advances in biomass utilization technology[J]. China Resources Comprehensive Utilization, 2019, 37(4): 79-85. | |
14 | 马隆龙, 唐志华, 汪丛伟, 等. 生物质能研究现状及未来发展战略[J]. 可再生能源规模利用, 2019, 34(4): 434-442. |
MA Longlong, TANG Zhihua, WANG Congwei, et al. Research status and future development strategy of biomass energy[J]. Scaled Utilization of Renewable Energy, 2019, 34(4): 434-442. | |
15 | LI T X, WANG R Z, KIPLAGAT J K, et al. Experimental study and comparison of thermochemical resorption refrigeration cycle and adsorption refrigeration cycle[J]. Chemical Engineering Science, 2010, 65(14): 4222-4230. |
16 | FERNANDES M S, BRITES G J V N, COSTA J J, et al. Review and future trends of solar adsorption refrigeration systems[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 102-123. |
17 | SARBU I, SEBARCHIEVICI C. General review of solar-powered closed sorption refrigeration systems[J]. Energy Conversion and Management, 2015, 105: 403-422. |
18 | WANG R Z, JIA J P, ZHU Y H, et al. Study on a new solid absorption refrigeration pair: active carbon fiber-methanol[J]. Journal of Solar Energy Engineering, 1997, 119(3): 214-218. |
19 | WANG Yunfeng, LI Ming, JI Xu, et al. Experimental study of the effect of enhanced mass transfer on the performance improvement of a solar-driven adsorption refrigeration system[J]. Applied Energy, 2018, 224: 417-425. |
20 | BELLOS E, CHATZOVOULOS I, TZIVANIDIS C. Yearly investigation of a solar-driven absorption refrigeration system with ammonia-water absorption pair[J]. Thermal Science and Engineering Progress, 2021, 23: 100885. |
21 | DINO G E, PALOMBA V, NOWAK E, et al. Experimental characterization of an innovative hybrid thermal-electric chiller for industrial cooling and refrigeration application[J]. Applied Energy, 2021, 281: 116098. |
22 | 姚远, 龚宇烈, 陆振能, 等. 中深层地热制冷技术在我国南方地区的应用与展望[J]. 科技促进发展, 2020, 16(S1): 352-358. |
YAO Yuan, GONG Yulie, LU Zhenneng, et al. Application and prospect of mid-deep geothermal refrigeration technology in South China[J]. Science & Technology for Development, 2020, 16(S1): 352-358. | |
23 | GHAEBI H, PARIKHANI T, ROSTAMZADEH H, et al. Proposal and assessment of a novel geothermal combined cooling and power cycle based on Kalina and ejector refrigeration cycles[J]. Applied Thermal Engineering, 2018, 130: 767-781. |
24 | 姜克隽. 碳中和目标下能源的高安全度供应系统[J]. 中国电力企业管理, 2021(7): 22-23. |
JIANG Kejun. A highly secure energy supply system for carbon neutral targets[J]. China Power Enterprise Management, 2021(7): 22-23. | |
25 | 苗青青, 石春艳, 张香平. 碳中和目标下的光伏发电技术[J]. 化工进展, 2022, 41(3): 1125-1131. |
MIAO Qingqing, SHI Chunyan, ZHANG Xiangping. Photovoltaic technology under carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1125-1131. | |
26 | 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. |
GUO Bowen, LUO Dan, ZHOU Hongjun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951. | |
27 | JIAO Yan, ZHENG Yao, JARONIEC M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086. |
28 | KOVAČ A, MARCIUŠ D, BUDIN L. Solar hydrogen production via alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2019, 44(20): 9841-9848. |
29 | YADAV D, BANERJEE R. Economic assessment of hydrogen production from solar driven high-temperature steam electrolysis process[J]. Journal of Cleaner Production, 2018, 183: 1131-1155. |
30 | 王聪, 代蓓蓓, 于佳玉, 等. 太阳能光电、光热转换材料的研究现状与进展[J]. 硅酸盐学报, 2017, 45(11): 1555-1568. |
WANG Cong, DAI Beibei, YU Jiayu, et al. Recent development and advance of solar photovoltaic materials and photothermal conversion materials[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1555-1568. | |
31 | 韩儒松, 蒋迎花, 康丽霞, 等. 风力发电制氢与氢气网络耦合系统的氢气波动平抑特性分析[J]. 化工进展, 2021, 40(11): 6071-6078. |
HAN Rusong, JIANG Yinghua, KANG Lixia, et al. Analysis of fluctuation suppressing characteristics for hydrogen network coupled with wind power generation system[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6071-6078. | |
32 | 袁铁江, 曹继雷. 计及风电-负荷不确定性的风氢低碳能源系统容量优化配置[J]. 高电压技术, 2021, 48(6): 2037-2044. |
YUAN Tiejiang, CAO Jilei. Capacity optimal allocation of wind hydrogen low-carbon energy system considering wind power-load uncertainty[J]. High Voltage Engineering, 2021, 48(6): 2037-2044. | |
33 | GONZÁLEZ-APARICIO I, PÉREZ-FORTES M, ZUCKER A, et al. Opportunities of integrating CO2 utilization with RES-E: a power-to-methanol business model with wind power generation[J]. Energy Procedia, 2017, 114: 6905-6918. |
34 | TANER T. The novel and innovative design with using H2 fuel of PEM fuel cell: Efficiency of thermodynamic analyze[J]. Fuel, 2021, 302: 121109. |
35 | ZHAO Zhenyu, ZUO Jian, FAN Leilei, et al. Impacts of renewable energy regulations on the structure of power generation in China—A critical analysis[J]. Renewable Energy, 2011, 36(1): 24-30. |
36 | ALLOUHI A, REHMAN S, KRARTI M. Role of energy efficiency measures and hybrid PV/biomass power generation in designing 100% electric rural houses: a case study in Morocco[J]. Energy and Buildings, 2021, 236: 110770. |
37 | AL-HAMED K H M, DINCER I. A novel multigeneration ammonia-based carbon capturing system powered by a geothermal power plant for cleaner applications[J]. Journal of Cleaner Production, 2021, 321: 129017. |
38 | 吴创之, 周肇秋, 阴秀丽, 等. 我国生物质能源发展现状与思考[J]. 农业机械学报, 2009, 40(1): 91-99. |
WU Chuangzhi, ZHOU Zhaoqiu, YIN Xiuli, et al. Current status of biomass energy development in China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(1): 91-99. | |
39 | 莫一波, 黄柳燕, 袁朝兴, 等. 地热能发电技术研究综述[J]. 东方电气评论, 2019, 33(2): 76-80. |
MO Yibo, HUANG Liuyan, YUAN Chaoxin, et al. Reviews of geothermal power generation technologies[J]. Dongfang Electric Review, 2019, 33(2): 76-80. | |
40 | OUESLATI F. Hybrid renewable system based on solar wind and fuel cell energies coupled with diesel engines for Tunisian climate: TRNSYS simulation and economic assessment[J]. International Journal of Green Energy, 2021, 18(4): 402-423. |
41 | CHEN Chao, YANG Aidong. Power-to-methanol: the role of process flexibility in the integration of variable renewable energy into chemical production[J]. Energy Conversion and Management, 2021, 228: 113673. |
42 | RIYAHI N, SARAEI A, VAHDAT AZAD A, et al. Energy analysis and optimization of a hybrid system of reverse osmosis desalination system and solar power plant (case study: Kish Island)[J]. International Journal of Energy and Environmental Engineering, 2022, 13(1): 67-75. |
43 | CARTA J A, CABRERA P. Optimal sizing of stand-alone wind-powered seawater reverse osmosis plants without use of massive energy storage[J]. Applied Energy, 2021, 304: 117888. |
44 | 毛巨正, 郑宏飞, 杨军伟, 等. 多效竖管降膜蒸发太阳能海水淡化装置性能研究[J]. 太阳能学报, 2017, 38(10): 2743-2748. |
MAO Juzheng, ZHENG Hongfei, YANG Junwei, et al. Performance investigation of solar desalination device with multi-effect vertical tube falling film evaporation[J]. Acta Energiae Solaris Sinica, 2017, 38(10): 2743-2748. | |
45 | GHENAI C, KABAKEBJI D, DOUBA I, et al. Performance analysis and optimization of hybrid multi-effect distillation adsorption desalination system powered with solar thermal energy for high salinity sea water[J]. Energy, 2021, 215: 119212. |
46 | 满曰南, 王晓娟, 王银涛, 等. 海水淡化技术研究新进展和发展趋势[J]. 工业水处理, 2014, 34(11): 8-12. |
MAN Yuenan, WANG Xiaojuan, WANG Yintao, et al. New search progress and development trend of seawater desalinization technology[J]. Industrial Water Treatment, 2014, 34(11): 8-12. | |
47 | 倪国强, 解田, 胡宏, 等. 反渗透技术在水处理中的应用进展[J]. 化工技术与开发, 2012, 41(10): 23-27. |
NI Guoqiang, XIE Tian, HU Hong, et al. Application of reverse osmosis technology in water treatment[J]. Technology & Development of Chemical Industry, 2012, 41(10): 23-27. | |
48 | 朱鹏飞, 郭磊磊, 尧兢, 等. 以生物质为燃料的SOFC和发动机热电联供系统:参数分析和性能优化[J]. 化工学报, 2021, 72(2): 1089-1099. |
ZHU Pengfei, GUO Leilei, YAO Jing, et al. Parameter analysis and optimization of power and heat cogeneration system with biomass fueled SOFC and engine[J]. CIESC Journal, 2021, 72(2): 1089-1099. | |
49 | PERNA A, MINUTILLO M, JANNELLI E, et al. Performance assessment of a hybrid SOFC/MGT cogeneration power plant fed by syngas from a biomass down-draft gasifier[J]. Applied Energy, 2018, 227: 80-91. |
50 | HUANG Wenge, WANG Jiangfeng, LU Zhijian, et al. Exergoeconomic and exergoenvironmental analysis of a combined heating and power system driven by geothermal source[J]. Energy Conversion and Management, 2020, 211: 112765. |
51 | BUDAK Y, DEVRIM Y. Evaluation of hybrid solar-wind-hydrogen energy system based on methanol electrolyzer[J]. International Journal of Energy Research, 2020, 44(13): 10222-10237. |
52 | HABIBOLLAHZADE A, GHOLAMIAN E, AHMADI P, et al. Multi-criteria optimization of an integrated energy system with thermoelectric generator, parabolic trough solar collector and electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(31): 14140-14157. |
53 | BORUNDA M, JARAMILLO O A, DORANTES R, et al. Organic Rankine Cycle coupling with a Parabolic Trough Solar Power Plant for cogeneration and industrial processes[J]. Renewable Energy, 2016, 86: 651-663. |
54 | 樊瑛, 龙惟定. 生物质热电联产发展现状[J]. 建筑科学, 2009, 25(12): 1-6, 38. |
FAN Ying, LONG Weiding. Development status of biomass combined heat and power generation[J]. Building Science, 2009, 25(12): 1-6, 38. | |
55 | VAN ERDEWEGHE S, VAN BAEL J, LAENEN B, et al. Optimal combined heat-and-power plant for a low-temperature geothermal source[J]. Energy, 2018, 150: 396-409. |
56 | GHORBANI B, SHIRMOHAMMADI R, MEHRPOOYA M. Development of an innovative cogeneration system for fresh water and power production by renewable energy using thermal energy storage system[J]. Sustainable Energy Technologies and Assessments, 2020, 37: 100572. |
57 | GHORBANI B, EBRAHIMI A, MORADI M, et al. Energy, exergy and sensitivity analyses of a novel hybrid structure for generation of bio-liquefied natural gas, desalinated water and power using solar photovoltaic and geothermal source[J]. Energy Conversion and Management, 2020, 222: 113215. |
58 | KARAPEKMEZ A, DINCER I. Thermodynamic analysis of a novel solar and geothermal based combined energy system for hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(9): 5608-5628. |
59 | MADLENER R, SCHMID C. Combined heat and power generation in liberalised markets and a carbon-constrained world[J]. GAIA: Ecological Perspectives for Science and Society, 2003, 12(2): 114-120. |
60 | RONG Aiying, LAHDELMA R. Role of polygeneration in sustainable energy system development challenges and opportunities from optimization viewpoints[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 363-372. |
61 | BAZMI A A, ZAHEDI G. Sustainable energy systems: Role of optimization modeling techniques in power generation and supply — A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3480-3500. |
62 | CENTI G, IAQUANIELLO G, PERATHONER S. Chemical engineering role in the use of renewable energy and alternative carbon sources in chemical production[J]. BMC Chemical Engineering, 2019, 1: 5. |
[1] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[2] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[3] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[4] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[5] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[6] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[7] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[8] | LI Xue, WANG Yanjun, WANG Yuchao, TAO Shengyang. Recent advances in bionic surfaces for fog collection [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2486-2503. |
[9] | ZHANG Wei, WANG Rui, MIAO Ping, TIAN Ge. Application research progress of renewable power-to-methane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1257-1269. |
[10] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
[11] | ZOU Yincai, LI Qingguo, WU Hui, ZHONG Xiaobing, CHEN Xianzhi. Heat transfer simulation and optimization of missile borne phase change heat sink [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1248-1256. |
[12] | YANG Chengruixue, HUANG Qiyuan, RAN Jiansu, CUI Yuntong, WANG Jianjian. Palladium nanoparticles supported by phosphoric acid-modified SiO2 as efficient catalysts for low-temperature hydrodeoxygenation of vanillin in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5179-5190. |
[13] | MA Wenjie, YAO Weitang. Application of covalent organic frameworks ( COFs ) in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5339-5352. |
[14] | ZENG Siying, YANG Minbo, FENG Xiao. Machine learning-based prediction of coalbed methane composition and real-time optimization of liquefaction process [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5059-5066. |
[15] | LIU Yanhui, ZHOU Mingfang, MA Ming, WANG Kai, TAN Tianwei. Recent advances on the bio-fixation of CO2 driven by renewable energy [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 1-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |