1 |
中华人民共和国国家能源局. 生物质能发展“十三五规划”[Z]. 2016-10-15.
|
|
National Energy Administration. Biomass energy development“The 13th Five-Year Plan”[Z]. 2016-10-15.
|
2 |
WANG Z W, LEI T Z, YANG M, et al. Life cycle environmental impacts of cornstalk briquette fuel in China[J]. Applied Energy, 2017, 192: 83-94.
|
3 |
ANAND V, SUNJEEV V, VINU R. Catalytic fast pyrolysis of Arthrospira platensis (spirulina) algae using zeolites[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 298-307.
|
4 |
崔旭阳, 杨俊红, 雷万宁, 等. 生物质成型燃料制备及燃烧过程添加剂应用及研究进展[J]. 化工进展, 2017, 36(4): 1247-1257.
|
|
CUI Xuyang, YANG Junhong, LEI Wanning, et al. Recent progress in research and application of DBBF additive in preparation and combustion process[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1247-1257.
|
5 |
BEIG B, RIAZ M, RAZA NAQVI S, et al. Current challenges and innovative developments in pretreatment of lignocellulosic residues for biofuel production: a review[J]. Fuel, 2021, 287: 119670.
|
6 |
张帅, 王贤华, 李攀, 等. 预处理法提高生物质热解产物品质的研究进展[J]. 化工进展, 2014, 33(2): 346-352.
|
|
ZHANG Shuai, WANG Xianhua, LI Pan, et al. Research progress in pretreatment method for the quality improvement of biomass pyrolysis products[J]. Chemical Industry and Engineering Progress, 2014, 33(2): 346-352.
|
7 |
金放鸣. 模拟自然加快碳循环: 水热转化生物质为高附加值产品[J]. 化工进展, 2010, 29(1): 1-10.
|
|
JIN Fangming. Speed up the carbon cycle by mimicking nature: hydrothermal conversion of biomass into value-added products[J]. Chemical Industry and Engineering Progress, 2010, 29(1): 1-10.
|
8 |
FANG Guigan, LIU Shanshan, SHEN Kuizhong, et al. Wet oxidation pretreatment of poplar waste for enhancing enzymatic hydrolysis efficiency[J]. Paper and Biomaterials, 2017, 2(2): 8-17.
|
9 |
WANG C W, ZHANG S Y, WU S Y, et al. Effect of oxidation processing on the preparation of post-hydrothermolysis acid from cotton stalk[J]. Bioresource Technology, 2018, 263: 289-296.
|
10 |
孙梦圆, 张守玉, 王才威, 等. 棉秆水热及水热氧化过程水相产物分析研究[J]. 化工学报, 2020, 71(5): 2382-2388.
|
|
SUN Mengyuan, ZHANG Shouyu, WANG Caiwei, et al. Aqueous products prepared by hydrothermal and hydrothermal oxidation processes of cotton stalk[J]. CIESC Journal, 2020, 71(5): 2382-2388.
|
11 |
VASSILEV S V, BAXTER D, ANDERSEN L K, et al. An overview of the organic and inorganic phase composition of biomass[J]. Fuel, 2012, 94: 1-33.
|
12 |
SEGAL L, CREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
|
13 |
WU S Y, ZHANG S Y, WANG C W, et al. High-strength charcoal briquette preparation from hydrothermal pretreated biomass wastes[J]. Fuel Processing Technology, 2018, 171: 293-300.
|
14 |
MOON C, SUNG Y, AHN S, et al. Effect of blending ratio on combustion performance in blends of biomass and coals of different ranks[J]. Experimental Thermal and Fluid Science, 2013, 47: 232-240.
|
15 |
PENG X W, MA X Q, XU Z B. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge[J]. Bioresource Technology, 2015, 180: 288-295.
|
16 |
FLÓREZ PARDO L M, SALCEDO MENDOZA J G, LÓPEZ GALÁN J E. Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues[J]. Brazilian Journal of Chemical Engineering, 2019, 36(1): 131-141.
|
17 |
LENG E W, ZHANG Y, PENG Y, et al. In situ structural changes of crystalline and amorphous cellulose during slow pyrolysis at low temperatures[J]. Fuel, 2018, 216: 313-321.
|
18 |
ILANIDIS D, WU G C, STAGGE S, et al. Effects of redox environment on hydrothermal pretreatment of lignocellulosic biomass under acidic conditions[J]. Bioresource Technology, 2021, 319: 124211.
|
19 |
ZHU G K, YANG L, GAO Y, et al. Characterization and pelletization of cotton stalk hydrochar from HTC and combustion kinetics of hydrochar pellets by TGA[J]. Fuel, 2019, 244: 479-491.
|
20 |
KARIMI K, TAHERZADEH M J. A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity[J]. Bioresource Technology, 2016, 200: 1008-1018.
|
21 |
SHINDE S D, MENG X Z, KUMAR R, et al. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery[J]. Green Chemistry, 2018, 20(10): 2192-2205.
|
22 |
STEFANIDIS S D, KALOGIANNIS K G, ILIOPOULOU E F, et al. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105: 143-150.
|
23 |
LI S Q, SONG H, HU J H, et al. CO2 gasification of straw biomass and its correlation with the feedstock characteristics[J]. Fuel, 2021, 297: 120780.
|
24 |
CAO Z Y, ZHANG S Y, HUANG X H, et al. Correlations between the compressive strength of the hydrochar pellets and the chemical components: evolution and densification mechanism[J]. Journal of Analytical and Applied Pyrolysis, 2020, 152: 104956.
|
25 |
孔令照. 生物质废弃物水热资源化处理过程及机理研究[D]. 上海: 同济大学, 2008.
|
|
KONG Lingzhao. Research on hydrothermal reutilization process and mechanics of biomass wastes[D]. Shanghai: Tongji University, 2008.
|
26 |
LEE J T E, KHAN M U, TIAN H L, et al. Improving methane yield of oil palm empty fruit bunches by wet oxidation pretreatment: mesophilic and thermophilic anaerobic digestion conditions and the associated global warming potential effects[J]. Energy Conversion and Management, 2020, 225: 113438.
|
27 |
REZA M T, LYNAM J G, VASQUEZ V R, et al. Pelletization of biochar from hydrothermally carbonized wood[J]. Environmental Progress & Sustainable Energy, 2012, 31(2): 225-234.
|
28 |
WANG C W, ZHANG S Y, HUANG S, et al. Effect of hydrothermal treatment on biomass structure with evaluation of post-pyrolysis process for wood vinegar preparation[J]. Fuel, 2021, 305: 121513.
|
29 |
霍丽丽, 赵立欣, 郝彦辉, 等. 国内外生物质成型燃料质量标准现状[J]. 农业工程学报, 2020, 36(9): 245-254.
|
|
HUO Lili, ZHAO Lixin, HAO Yanhui, et al. Quality standard system of densified biomass fuels at home and abroad[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 245-254.
|