1 |
KOPP R E, KEMP A C, BITTERMANN K, et al. Temperature-driven global sea-level variability in the Common Era[J]. PNAS, 2016, 113(11): E1434-E1441.
|
2 |
KEMP A C, HORTON B P, DONNELLY J P, et al. Climate related sea-level variations over the past two millennia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 11017-11022.
|
3 |
郝静, 宛霞. 过去五年史上最热 《2019年全球气候状况声明》发布[J]. 科学大观园, 2020(8): 18-19.
|
|
HAO Jing, WAN Xia. Hottest on record for the past five years “State of the Global Climate 2019 Statement” released[J]. Grand Garden of Science, 2020(8): 18-19.
|
4 |
惠婕. 应对气候变化,拯救我们的星球[J]. 世界环境, 2021(1): 14-15.
|
|
HUI Jie. Address climate change and save our planet[J]. World Environment, 2021(1): 14-15.
|
5 |
赵信国, 刘广绪. 海洋酸化对海洋无脊椎动物的影响研究进展[J]. 生态学报, 2015, 35(7): 2388-2398.
|
|
ZHAO Xinguo, LIU Guangxu. Advances in the effects of ocean acidification on marine invertebrates[J]. Acta Ecologica Sinica, 2015, 35(7): 2388-2398.
|
6 |
CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488 (7411): 294-303.
|
7 |
王克, 刘芳名, 尹明健, 等. 1.5℃温升目标下中国碳排放路径研究[J]. 气候变化研究进展, 2021, 17(1): 7-17.
|
|
WANG Ke, LIU Fangming, YIN Mingjian, et al. Research on China’s carbon emissions pathway under the 1.5℃ target[J]. Climate Change Research, 2021, 17(1): 7-17.
|
8 |
RAMACHANDRIYA K D, KUNDIYANA D K, WILKINS M R, et al. Carbon dioxide conversion to fuels and chemicals using a hybrid green process[J]. Applied Energy, 2013, 112: 289-299.
|
9 |
徐敏杰, 朱明辉, 陈天元, 等. CO2高值化利用:CO2加氢制甲醇催化剂研究进展[J]. 化工进展, 2021, 40(2): 565-576.
|
|
XU Minjie, ZHU Minghui, CHEN Tianyuan, et al. High value utilization of CO2: research progress of catalyst for hydrogenation of CO2 to methanol[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 565-576.
|
10 |
ACRES Gary. Beyond oil and gas: the methanol econnmy[J].Chemistry and Industry, 2006(14): 26-27.
|
11 |
AWAD O I, MAMAT R, IBRAHIM T K, et al. Overview of the oxygenated fuels in spark ignition engine: environmental and performance[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 394-408.
|
12 |
ALI K A, ABDULLAH A Z, MOHAMED A R. Recent development in catalytic technologies for methanol synthesis from renewable sources: a critical review[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 508-518.
|
13 |
KOTHANDARAMAN J, KAR S, GOEPPERT A, et al. Advances in homogeneous catalysis for low temperature methanol reforming in the context of the methanol economy[J]. Topics in Catalysis, 2018, 61(7/8): 542-559.
|
14 |
贾晨喜, 邵敬爱, 白小薇, 等. 二氧化碳加氢制甲醇铜基催化剂性能的研究进展[J]. 化工进展, 2020, 39(9): 3658-3668.
|
|
JIA Chenxi, SHAO Jingai, BAI Xiaowei, et al. Review on Cu-based catalysts for CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3658-3668.
|
15 |
HAYWARD J S, SMITH P J, KONDRAT S A, et al. The effects of secondary oxides on copper-based catalysts for green methanol synthesis[J]. ChemCatChem, 2017, 9(9): 1655-1662.
|
16 |
TURSUNOV O, KUSTOV L, TILYABAEV Z. Methanol synthesis from the catalytic hydrogenation of CO2 over CuO-ZnO supported on aluminum and silicon oxides[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 416-422.
|
17 |
HU Nian, LI Xiaoyun, LIU Siming, et al. Enhanced stability of highly-dispersed copper catalyst supported by hierarchically porous carbon for long term selective hydrogenation[J]. Chinese Journal of Catalysis, 2020, 41(7): 1081-1090.
|
18 |
YANG Bin, DENG Wei, GUO Limin, et al. Copper-ceria solid solution with improved catalytic activity for hydrogenation of CO2 to CH3OH[J]. Chinese Journal of Catalysis, 2020, 41(9): 1348-1359.
|
19 |
RAUDASKOSKI R, NIEMELÄ M V, KEISKI R L. The effect of ageing time on co-precipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2 [J]. Topics in Catalysis, 2007, 45(1/2/3/4): 57-60.
|
20 |
GRACIANI J, MUDIYANSELAGE K, XU Fang, et al. Catalysis. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO₂[J]. Science, 2014, 345(6196): 546-550.
|
21 |
OUYANG Bi, TAN Weiling, LIU Bing. Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation[J]. Catalysis Communications, 2017, 95: 36-39.
|
22 |
KASPAR J. Catalysis by ceria and related materials[M]. Italy: IMPERIAL, 2015: 221-252.
|
23 |
BADWAL S P S, FINI D, CIACCHI F T, et al. Structural and microstructural stability of ceria-gadolinia electrolyte exposed to reducing environments of high temperature fuel cells[J]. Journal of Materials Chemistry A, 2013, 1(36): 10768.
|
24 |
ZHANG Y W, SI R, LIAO C S, et al. Facile alcohothermal synthesis, size-dependent ultraviolet absorption, and enhanced CO conversion activity of ceria nanocrystals[J]. The Journal of Physical Chemistry B, 2003, 107(37): 10159-10167.
|
25 |
ZHANG Jingcai, YANG Hongxiao, WANG Shuping, et al. Mesoporous CeO2 nanoparticles assembled by hollow nanostructures: formation mechanism and enhanced catalytic properties[J]. CrystEngComm, 2014, 16(37): 8777-8785.
|
26 |
CHEN Shilong, XIONG Feng, HUANG Weixin. Surface chemistry and catalysis of oxide model catalysts from single crystals to nanocrystals[J]. Surface Science Reports, 2019, 74(4): 100471.
|
27 |
POLO-GARZON F, BAO Zhenghong, ZHANG Xuanyu, et al. Surface reconstructions of metal oxides and the consequences on catalytic chemistry[J]. ACS Catalysis, 2019, 9(6): 5692-5707.
|
28 |
HUANG Weixin, GAO Yuxian. ChemInform abstract: morphology-dependent surface chemistry and catalysis of CeO2 nanocrystals[J]. Catalysis Science & Technology, 2014, 4(11): 3772-3784.
|
29 |
On the question of speed of growth and dissolution of crystal surfaces[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 1901, 34(1/2/3/4/5/6): 449-530.
|
30 |
ZHANG Dengsong, DU Xianjun, SHI Liyi, et al. Shape-controlled synthesis and catalytic application of ceria nanomaterials[J]. Dalton Transactions, 2012,41(48): 14455-14475.
|
31 |
位忠斌, 崔育倩, 郭培志, 等. 二氧化铈八面体的水热合成与表征[J]. 无机化学学报, 2011, 27(7): 1399-1404.
|
|
WEI Zhongbin, CUI Yuqian, GUO Peizhi, et al. Hydrothermal synthesis and characterization of ceria octahedrons[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(7): 1399-1404.
|
32 |
TANA, ZHANG Milin, LI Juan, et al. Morphology-dependent redox and catalytic properties of CeO2 nanostructures: Nanowires, nanorods and nanoparticles[J]. Catalysis Today, 2009, 148(1/2): 179-183.
|
33 |
WANG Xue, JIANG Zhiyuan, ZHENG Binjie, et al. Synthesis and shape-dependent catalytic properties of CeO2 nanocubes and truncated octahedra[J]. CrystEngComm, 2012, 14(22): 7579.
|
34 |
SENANAYAKE S D, RAMÍREZ P J, WALUYO I, et al. Hydrogenation of CO2 to methanol on CeO x /Cu(111) and ZnO/Cu(111) catalysts: role of the metal-oxide interface and importance of Ce3+ sites[J]. The Journal of Physical Chemistry C, 2016, 120(3): 1778-1784.
|
35 |
GAO Yuxian, ZHANG Zhenhua, LI Zhaorui, et al. Understanding morphology-dependent CuO x -CeO2 interactions from the very beginning[J]. Chinese Journal of Catalysis, 2020, 41(6): 1006-1016.
|
36 |
HUANG Weixin. Oxide nanocrystal model catalysts[J]. Accounts of Chemical Research, 2016, 49(3): 520-527.
|
37 |
LUO Mengfei, SONG Yupeng, LU Jiqing, et al. Identification of CuO species in high surface area CuO-CeO2 catalysts and their catalytic activities for CO oxidation[J]. The Journal of Physical Chemistry C, 2007, 111(34): 12686-12692.
|
38 |
NOLAN M, GRIGOLEIT S, SAYLE D C, et al. Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria[J]. Surface Science, 2005, 576(1/2/3): 217-229.
|
39 |
GAO Yuxian, WANG Wendong, CHANG Sujie, et al. Morphology effect of CeO2 support in the preparation, metal-support interaction, and catalytic performance of Pt/CeO2 catalysts[J]. ChemCatChem, 2013, 5(12): 3610-3620.
|
40 |
GRACIANI J, VIDAL A B, RODRIGUEZ J A, et al. Unraveling the nature of the oxide-metal interaction in ceria-based noble metal inverse catalysts[J]. The Journal of Physical Chemistry C, 2014, 118(46): 26931-26938.
|
41 |
CÁMARA A L, BERA P, CONESA J C, et al. Characterization of active sites/entities and redox/catalytic correlations in copper-ceria-based catalysts for preferential oxidation of CO in H2-rich streams[J]. Catalysts, 2013, 3(2): 378-400.
|
42 |
LI L, ZHAN Y Y, CHEN C Q, et al. Effect of CeO2 support prepared with different methods on the activity and stability of CuO/CeO2 catalysts for the water-gas shift reaction[J]. Journal of Physical Chemistry, 2009, 25(7): 1397-1404.
|
43 |
KOSTIĆ R, AŠKRABIĆ S, DOHČEVIĆ-MITROVIĆ Z, et al. Low-frequency Raman scattering from CeO2 nanoparticles[J]. Applied Physics A, 2008, 90(4): 679-683.
|
44 |
HE Chi, YU Yanke, YUE Lin, et al. Low-temperature removal of toluene and propanal over highly active mesoporous CuCeO x catalysts synthesized via a simple self-precipitation protocol[J]. Applied Catalysis B: Environmental, 2014, 147: 156-166.
|
45 |
WU Xinping, GONG Xueqing. Clustering of oxygen vacancies at CeO2(111): critical role of hydroxyls[J]. Physical Review Letters, 2016, 116(8): 086102.
|
46 |
MCBRIDE J R, HASS K C, POINDEXTER B D, et al. Raman and X-ray studies of Ce1- x RE x O2- y, where RE=La, Pr, Nd, Eu, Gd, and Tb[J]. Journal of Applied Physics, 1994, 76(4): 2435-2441.
|
47 |
WEBER W H, HASS K C, MCBRIDE J R. Raman study of CeO2: second-order scattering, lattice dynamics, and particle-size effects[J]. Physical Review B, Condensed Matter, 1993, 48(1): 178-185.
|
48 |
王禹皓. Cu-ZnO-ZrO2界面相互作用及其催化CO2加氢选择性合成甲醇的研究[D]. 昆明: 昆明理工大学, 2018.
|
|
WANG Yuhao. Cu-ZnO-ZrO2 interfacial interaction and its catalytic hydrogenation of CO2 for selective synthesis of methanol[D]. Kunming: Kunming University of Science and Technology, 2018.
|
49 |
WANG Xianqin, RODRIGUEZ J A, HANSON J C, et al. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria[J]. The Journal of Physical Chemistry B, 2006, 110(1): 428-434.
|
50 |
YANG Zhijie, HAN Dongqing, MA Donglin, et al. Fabrication of monodisperse CeO2 hollow spheres assembled by nano-octahedra[J]. Crystal Growth & Design, 2010, 10(1): 291-295.
|
51 |
PALOMINO R M, RAMÍREZ P J, LIU Zongyuan, et al. Hydrogenation of CO2 on ZnO/Cu(100) and ZnO/Cu(111) catalysts: role of copper structure and metal-oxide interface in methanol synthesis[J]. The Journal of Physical Chemistry B, 2018, 122(2): 794-800.
|
52 |
SKORODUMOVA N V, BAUDIN M, HERMANSSON K. Surface properties of CeO2 from first principles[J]. Physical Review B, 2004, 69(7): 075401.
|
53 |
SI Rui, RAITANO J, YI Nan, et al. Structure sensitivity of the low-temperature water-gas shift reaction on Cu-CeO2 catalysts[J]. Catalysis Today, 2012, 180(1): 68-80.
|
54 |
KAMMERT J, MOON J, WU Zili. A review of the interactions between ceria and H2 and the applications to selective hydrogenation of alkynes[J]. Chinese Journal of Catalysis, 2020, 41(6): 901-914.
|
55 |
MARTÍNEZ-ARIAS A, GAMARRA D, FERNÁNDEZ-GARCÍA M, et al. Comparative study on redox properties of nanosized CeO2 and CuO/CeO2 under CO/O2 [J]. Journal of Catalysis, 2006, 240(1): 1-7.
|
56 |
ZABILSKIY M, DJINOVIĆ P, TCHERNYCHOVA E, et al. Nanoshaped CuO/CeO2 materials: effect of the exposed ceria surfaces on catalytic activity in N2O decomposition reaction[J]. ACS Catalysis, 2015, 5(9): 5357-5365.
|
57 |
MENON U, POELMAN H, BLIZNUK V, et al. Nature of the active sites for the total oxidation of toluene by CuOCeO2/Al2O3 [J]. Journal of Catalysis, 2012, 295: 91-103.
|
58 |
WANG Shuxian, GUO Ruitang, PAN Weiguo, et al. The deactivation of Ce/TiO2 catalyst for NH3-SCR reaction by alkali metals: TPD and DRIFT studies[J]. Catalysis Communications, 2017, 89: 143-147.
|
59 |
GIORDANO F, TROVARELLI A, DE LEITENBURG C, et al. Some insight into the effects of oxygen diffusion in the reduction kinetics of ceria[J]. Industrial & Engineering Chemistry Research, 2001, 40(22): 4828-4835.
|