Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3597-3607.DOI: 10.16085/j.issn.1000-6613.2021-1833
• Industrial catalysis • Previous Articles Next Articles
LI Yufeng1,2(), WANG Shaoqing1,2, ZHANG Andong1,2, BI Dongmei1,2, LI Zhihe1,2(), GAO Liang1,2, WAN Zhen1,2
Received:
2021-08-26
Revised:
2021-09-08
Online:
2022-07-23
Published:
2022-07-25
Contact:
LI Zhihe
李玉峰1,2(), 王绍庆1,2, 张安东1,2, 毕冬梅1,2, 李志合1,2(), 高亮1,2, 万震1,2
通讯作者:
李志合
作者简介:
李玉峰(1995—),男,硕士研究生,研究方向为生物质能源与材料。E-mail:基金资助:
CLC Number:
LI Yufeng, WANG Shaoqing, ZHANG Andong, BI Dongmei, LI Zhihe, GAO Liang, WAN Zhen. Preparation of catalytic porous ceramic balls and catalytic pyrolysis of corn stover[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3597-3607.
李玉峰, 王绍庆, 张安东, 毕冬梅, 李志合, 高亮, 万震. 催化型多孔陶瓷球制备及催化玉米秸秆热解[J]. 化工进展, 2022, 41(7): 3597-3607.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1833
元素分析 wd/% | 工业分析 wd/% | 组分分析 wd/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | C | H | O* | 灰分 | 挥发分 | 固定碳 | 纤维素 | 半纤维素 | 木质素 | ||
0.63 | 43.87 | 5.57 | 40.11 | 9.82 | 71.31 | 18.87 | 31.98 | 29.23 | 2.84 |
元素分析 wd/% | 工业分析 wd/% | 组分分析 wd/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | C | H | O* | 灰分 | 挥发分 | 固定碳 | 纤维素 | 半纤维素 | 木质素 | ||
0.63 | 43.87 | 5.57 | 40.11 | 9.82 | 71.31 | 18.87 | 31.98 | 29.23 | 2.84 |
生物油组分 | 相对峰面积/% | ||||||
---|---|---|---|---|---|---|---|
无催化 | PCB | Zn/PCB | Ni/PCB | Ce/PCB | Cr/PCB | Fe/PCB | |
醛类 | |||||||
甲醛 | 1.27 | 0.71 | 0.25 | 0.36 | 0.32 | 0.22 | 0.28 |
甲基乙二醛 | 0.60 | 0.77 | 1.22 | 1.62 | 1.40 | 2.50 | 1.80 |
2-甲基十一醛 | — | — | 1.53 | 1.33 | 1.81 | 1.36 | 1.40 |
3-羟基苯甲醛 | 0.88 | 0.81 | 1.44 | 1.52 | 1.67 | 1.51 | 1.37 |
醇类 | |||||||
甲醇 | 4.91 | 4.26 | 2.48 | 2.02 | 1.53 | 2.33 | 2.18 |
1,7,7-三甲基-双环[2,2,1]庚烷-2,3-二醇 | 1.25 | 1.59 | — | — | — | — | — |
酮类 | |||||||
2,3-丁二酮 | 1.78 | 1.65 | — | — | — | — | — |
1-羟基-2-丙酮 | 6.29 | 6.42 | 5.06 | 5.26 | 4.42 | 4.35 | 5.18 |
1-乙酰氧基-2-丁酮 | 1.87 | 1.66 | 1.50 | 1.38 | 1.29 | 1.12 | 1.28 |
1-乙酰氧基-2-丙酮 | 1.70 | 1.52 | 1.21 | 1.26 | 1.23 | 1.07 | 1.34 |
2-甲基-1-戊烯-1酮 | 0.88 | 0.93 | 1.60 | 1.60 | 1.95 | 1.42 | 1.01 |
3-甲基-1,2-环戊二酮 | — | — | 1.45 | 1.57 | 1.67 | 1.20 | 1.52 |
酸类 | |||||||
甲酸 | 1.27 | 0.54 | — | — | — | — | — |
乙酸 | 22.9 | 23.05 | 19.39 | 20.37 | 17.54 | 20.09 | 24.82 |
丙酸 | 2.62 | 2.57 | 1.33 | 1.60 | 1.41 | 1.20 | 1.68 |
亚甲基环丙烷羧酸 | 1.95 | 2.03 | — | — | — | — | — |
酯类 | |||||||
2-氧代丙酸甲酯 | 1.11 | 0.91 | 0.61 | 0.52 | 0.53 | 0.41 | 0.52 |
丁内酯 | 0.97 | 1.22 | 1.18 | 1.41 | 1.36 | 1.32 | 1.47 |
酚类 | |||||||
苯酚 | 3.48 | 4.01 | 3.81 | 4.08 | 3.69 | 3.73 | 4.07 |
2-甲基苯酚 | 1.39 | 1.56 | 1.12 | 1.10 | 1.03 | 1.06 | 1.11 |
对甲酚 | 1.85 | 2.14 | 2.43 | 2.23 | 2.25 | 2.23 | 2.45 |
4-乙基苯酚 | 1.91 | 2.55 | 2.47 | 2.58 | 2.32 | 2.17 | 2.23 |
邻苯二酚 | — | — | 1.96 | 1.67 | 1.94 | 0.43 | 0.72 |
对苯二酚 | — | — | 1.33 | 1.33 | 1.38 | 1.39 | 1.30 |
呋喃类 | |||||||
糠醛 | 6.02 | 6.25 | 3.08 | 3.22 | 3.23 | 3.64 | 4.22 |
2-呋喃甲醇 | — | — | 1.43 | 1.51 | 1.39 | 1.41 | 1.44 |
3-甲基-2,5-呋喃二酮 | 0.94 | 0.89 | 1.79 | 1.38 | 1.55 | 2.02 | 1.79 |
2,3-二氢苯并呋喃 | 4.06 | 4.92 | 7.04 | 6.81 | 6.94 | 7.71 | 7.00 |
5-羟甲基糠醛 | 1.10 | 0.94 | 1.87 | 1.65 | 1.89 | 1.94 | 1.90 |
糖类 | |||||||
1,4:3,6-二脱水-α-D-吡喃葡萄糖 | — | — | 1.67 | 1.56 | 1.70 | 1.70 | 1.78 |
1,6-脱水-β-D-吡喃葡萄糖 | 1.57 | 1.44 | 2.61 | 2.59 | 3.22 | 3.65 | 2.14 |
生物油组分 | 相对峰面积/% | ||||||
---|---|---|---|---|---|---|---|
无催化 | PCB | Zn/PCB | Ni/PCB | Ce/PCB | Cr/PCB | Fe/PCB | |
醛类 | |||||||
甲醛 | 1.27 | 0.71 | 0.25 | 0.36 | 0.32 | 0.22 | 0.28 |
甲基乙二醛 | 0.60 | 0.77 | 1.22 | 1.62 | 1.40 | 2.50 | 1.80 |
2-甲基十一醛 | — | — | 1.53 | 1.33 | 1.81 | 1.36 | 1.40 |
3-羟基苯甲醛 | 0.88 | 0.81 | 1.44 | 1.52 | 1.67 | 1.51 | 1.37 |
醇类 | |||||||
甲醇 | 4.91 | 4.26 | 2.48 | 2.02 | 1.53 | 2.33 | 2.18 |
1,7,7-三甲基-双环[2,2,1]庚烷-2,3-二醇 | 1.25 | 1.59 | — | — | — | — | — |
酮类 | |||||||
2,3-丁二酮 | 1.78 | 1.65 | — | — | — | — | — |
1-羟基-2-丙酮 | 6.29 | 6.42 | 5.06 | 5.26 | 4.42 | 4.35 | 5.18 |
1-乙酰氧基-2-丁酮 | 1.87 | 1.66 | 1.50 | 1.38 | 1.29 | 1.12 | 1.28 |
1-乙酰氧基-2-丙酮 | 1.70 | 1.52 | 1.21 | 1.26 | 1.23 | 1.07 | 1.34 |
2-甲基-1-戊烯-1酮 | 0.88 | 0.93 | 1.60 | 1.60 | 1.95 | 1.42 | 1.01 |
3-甲基-1,2-环戊二酮 | — | — | 1.45 | 1.57 | 1.67 | 1.20 | 1.52 |
酸类 | |||||||
甲酸 | 1.27 | 0.54 | — | — | — | — | — |
乙酸 | 22.9 | 23.05 | 19.39 | 20.37 | 17.54 | 20.09 | 24.82 |
丙酸 | 2.62 | 2.57 | 1.33 | 1.60 | 1.41 | 1.20 | 1.68 |
亚甲基环丙烷羧酸 | 1.95 | 2.03 | — | — | — | — | — |
酯类 | |||||||
2-氧代丙酸甲酯 | 1.11 | 0.91 | 0.61 | 0.52 | 0.53 | 0.41 | 0.52 |
丁内酯 | 0.97 | 1.22 | 1.18 | 1.41 | 1.36 | 1.32 | 1.47 |
酚类 | |||||||
苯酚 | 3.48 | 4.01 | 3.81 | 4.08 | 3.69 | 3.73 | 4.07 |
2-甲基苯酚 | 1.39 | 1.56 | 1.12 | 1.10 | 1.03 | 1.06 | 1.11 |
对甲酚 | 1.85 | 2.14 | 2.43 | 2.23 | 2.25 | 2.23 | 2.45 |
4-乙基苯酚 | 1.91 | 2.55 | 2.47 | 2.58 | 2.32 | 2.17 | 2.23 |
邻苯二酚 | — | — | 1.96 | 1.67 | 1.94 | 0.43 | 0.72 |
对苯二酚 | — | — | 1.33 | 1.33 | 1.38 | 1.39 | 1.30 |
呋喃类 | |||||||
糠醛 | 6.02 | 6.25 | 3.08 | 3.22 | 3.23 | 3.64 | 4.22 |
2-呋喃甲醇 | — | — | 1.43 | 1.51 | 1.39 | 1.41 | 1.44 |
3-甲基-2,5-呋喃二酮 | 0.94 | 0.89 | 1.79 | 1.38 | 1.55 | 2.02 | 1.79 |
2,3-二氢苯并呋喃 | 4.06 | 4.92 | 7.04 | 6.81 | 6.94 | 7.71 | 7.00 |
5-羟甲基糠醛 | 1.10 | 0.94 | 1.87 | 1.65 | 1.89 | 1.94 | 1.90 |
糖类 | |||||||
1,4:3,6-二脱水-α-D-吡喃葡萄糖 | — | — | 1.67 | 1.56 | 1.70 | 1.70 | 1.78 |
1,6-脱水-β-D-吡喃葡萄糖 | 1.57 | 1.44 | 2.61 | 2.59 | 3.22 | 3.65 | 2.14 |
催化剂 | 比表面积/m2·g-1 | 孔容/10-3cm3·g-1 | 孔径/nm |
---|---|---|---|
无 | 3.78 | 6.75 | 13.54 |
PCB | 4.44 | 6.89 | 11.53 |
Zn/PCB | 4.96 | 7.71 | 7.93 |
Ni/PCB | 5.43 | 7.77 | 7.12 |
Ce/PCB | 5.11 | 9.52 | 7.79 |
Cr/PCB | 8.28 | 14.99 | 7.45 |
Fe/PCB | 9.37 | 15.91 | 7.03 |
催化剂 | 比表面积/m2·g-1 | 孔容/10-3cm3·g-1 | 孔径/nm |
---|---|---|---|
无 | 3.78 | 6.75 | 13.54 |
PCB | 4.44 | 6.89 | 11.53 |
Zn/PCB | 4.96 | 7.71 | 7.93 |
Ni/PCB | 5.43 | 7.77 | 7.12 |
Ce/PCB | 5.11 | 9.52 | 7.79 |
Cr/PCB | 8.28 | 14.99 | 7.45 |
Fe/PCB | 9.37 | 15.91 | 7.03 |
1 | WU Q H, WANG Y P, PENG Y J, et al. Microwave-assisted pyrolysis of waste cooking oil for hydrocarbon bio-oil over metal oxides and HZSM-5 catalysts[J]. Energy Conversion and Management, 2020, 220: 113124. |
2 | DAI L L, WANG Y P, LIU Y H, et al. Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: a state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 20-36. |
3 | 仉俐, 姚宗路, 赵立欣, 等. 生物质热解制备高品质生物油研究进展[J]. 化工进展, 2021, 40(1): 139-150. |
ZHANG Li, YAO Zonglu, ZHAO Lixin, et al. Researd progress on preparation of high quality bio-oil by pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 139-150. | |
4 | 方书起, 王毓谦, 李攀, 等. 生物质热解利用中主要催化剂的研究进展[J]. 化工进展, 2021, 40(9): 5195-5203. |
FANG Shuqi, WANG Yuqian, LI Pan, et al. Researd progress of main catalyst in biomass pyrolysis and utilization[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5195-5203. | |
5 | LIU C, WANG H, KARIM A M, et al. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43(22): 7594-7623. |
6 | CHEN X, CHE Q F, LI S J, et al. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield[J]. Fuel Processing Technology, 2019, 196: 106180. |
7 | ZHANG C T, ZHANG L J, LI Q Y, et al. Catalytic pyrolysis of poplar wood over transition metal oxides: correlation of catalytic behaviors with physiochemical properties of the oxides[J]. Biomass and Bioenergy, 2019, 124: 125-141. |
8 | 方书起, 石崇, 李攀, 等. Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J]. 化工学报, 2020, 71(4): 1637-1645. |
FANG Shuqi, SHI Chong, LI Pan, et al. Study on rapid pyrolysis characteristics of biomass catalyzed by Fe-Zn co-modified ZSM-5[J]. CIESC Journal, 2020, 71(4): 1637-1645. | |
9 | MANTE O D, RODRIGUEZ J A, SENANAYAKE S D, et al. Catalytic conversion of biomass pyrolysis vapors into hydrocarbon fuel precursors[J]. Green Chemistry, 2015, 17(4): 2362-2368. |
10 | LI Z H, LI N, YI W M, et al. Design and operation of a down-tube reactor demonstration plant for biomass fast pyrolysis[J]. Fuel Processing Technology, 2017, 161: 182-192. |
11 | FU P, YI W M, LI Z H, et al. Comparative study on fast pyrolysis of agricultural straw residues based on heat carrier circulation heating[J]. Bioresource Technology, 2019, 271: 136-142. |
12 | FU P, BAI X Y, LI Z H, et al. Fast pyrolysis of corn stovers with ceramic ball heat carriers in a novel dual concentric rotary cylinder reactor[J]. Bioresource Technology, 2018, 263: 467-474. |
13 | 毕冬梅, 张凯真, 易维明, 等. 白云石基多孔陶瓷负载Al2O3催化生物质热解试验[J]. 农业机械学报, 2019, 50(10): 315-322. |
BI Dongmei, ZHANG Kaizhen, YI Weiming, et al. Catalytic pyrolysis of biomass with porous ceramic loading aluminum oxide[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 315-322. | |
14 | 李润东, 张杨, 李秉硕, 等. 玉米秸秆催化液化制备生物油实验研究[J]. 燃料化学学报, 2016, 44(1): 69-75. |
LI Rundong, ZHANG Yang, LI Bingshuo, et al. Hydrothermal catalytic liquefaction of corn stalk for preparation of bio-oil[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 69-75. | |
15 | 王绍庆, 李志合, 易维明, 等. 活化赤泥催化热解玉米芯木质素制备高值单酚[J]. 农业工程学报, 2020, 36(13): 203-211. |
WANG Shaoqing, LI Zhihe, YI Weiming, et al. Catalytic pyrolysis of maize cob lignin over activated red mud catalyst for value-added mono-phenol production[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 203-211. | |
16 | ZOU A C, LIANG H X, JIAO C, et al. Fabrication and properties of CaSiO3/ Sr3(PO4)2 composite scaffold based on extrusion deposition[J]. Ceramics International, 2021, 47(4): 4783-4792. |
17 | HU X, GHOLIZADEH M. Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage[J]. Journal of Energy Chemistry, 2019, 39: 109-143. |
18 | 王亚珂, 朱保顺, 力国民, 等. 利用固废煤矸石制备Fe/C/Mullite-基陶粒复合型吸波材料[J]. 燃料化学学报, 2021, 49(2): 238-246. |
WANG Yake, ZHU Baoshun, LI Guomin, et al. Preparation of Fe/C/Mullite-based ceramsite composite absorbing materials by recycling solid waste coal gangue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 238-246. | |
19 | YU Y X, KONG J, WANG M J, et al. Structure and oxidation reactivity of char: effects of pyrolysis heating rate and pressure[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1025-1035. |
20 | 胡二峰, 赵立欣, 吴娟, 等. 生物质热解影响因素及技术研究进展[J]. 农业工程学报, 2018, 34(14): 212-220. |
HU Erfeng, ZHAO Lixin, WU Juan, et al. Research advance on influence factors and technologies of biomass pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 212-220. | |
21 | JAHIRUL M, RASUL M, CHOWDHURY A, et al. Biofuels production through biomass pyrolysis—A technological review[J]. Energies, 2012, 5(12): 4952-5001. |
22 | CHEN S, WOJCIESZAK R, DUMEIGNIL F, et al. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural[J]. Chemical Reviews, 2018, 118(22): 11023-11117. |
23 | WANG J Z, LIU Q, ZHOU J, et al. Production of high-value chemicals by biomass pyrolysis with metal oxides and zeolites[J]. Waste and Biomass Valorization, 2021, 12(6): 3049-3057. |
24 | 丁爽, 葛庆峰, 祝新利. 金属氧化物催化生物质衍生羧酸酮基化研究进展[J]. 化学学报, 2017, 75(5): 439-447. |
DING Shuang, GE Qingfeng, ZHU Xinli. Research progress in ketonization of biomass-derived carboxylic acids over metal oxides[J]. Acta Chimica Sinica, 2017, 75(5): 439-447. | |
25 | CHEN X, LI S J, LIU Z H, et al. Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO[J]. Bioresource Technology, 2019, 287: 121493. |
26 | FU P, YI W M, LI Z H, et al. Evolution of char structural features during fast pyrolysis of corn straw with solid heat carriers in a novel V-shaped down tube reactor[J]. Energy Conversion and Management, 2017, 149: 570-578. |
27 | ZHANG A D, LIANG C M, WANG L H, et al. Study on the trigger mechanism and carbon behavior of catalytic reforming of wood vinegar[J]. International Journal of Hydrogen Energy, 2020, 45(29): 14669-14678. |
28 | ZHANG A D, LI Z H, YI W M, et al. Study the reaction mechanism of catalytic reforming of acetic acid through the instantaneous gas production[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21279-21289. |
29 | GAO L, LI Z H, YI W M, et al. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105602. |
[1] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[2] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[3] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[4] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[5] | ZHU Wei, QI Penggang, SU Yinhai, ZHANG Shuping, XIONG Yuanquan. Preparation and properties of bio-oil hierarchical porous carbon electrode materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3077-3086. |
[6] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[7] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[8] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[9] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
[10] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
[11] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[12] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[13] | XING Xianjun, LUO Tian, BU Yuzheng, MA Peiyong. Preparation of biochar from walnut shells activated by H3PO4 and its application in Cr(Ⅵ) adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1527-1539. |
[14] | ZHENG Yunwu, PEI Tao, LI Donghua, WANG Jida, LI Jirong, ZHENG Zhifeng. Production of hydrocarbon-rich bio-oil by catalytic biomass pyrolysis over metal oxide improved P/HZSM-5 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1353-1364. |
[15] | YANG Chengruixue, HUANG Qiyuan, RAN Jiansu, CUI Yuntong, WANG Jianjian. Palladium nanoparticles supported by phosphoric acid-modified SiO2 as efficient catalysts for low-temperature hydrodeoxygenation of vanillin in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5179-5190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |