Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3589-3596.DOI: 10.16085/j.issn.1000-6613.2021-1644
• Industrial catalysis • Previous Articles Next Articles
ZENG Junjian1,2(), ZHAO Jigang3(
)
Received:
2021-08-04
Revised:
2021-10-16
Online:
2022-07-23
Published:
2022-07-25
Contact:
ZHAO Jigang
通讯作者:
赵基钢
作者简介:
曾军建(1992—),男,讲师,硕士,研究方向为工业催化。E-mail:基金资助:
CLC Number:
ZENG Junjian, ZHAO Jigang. Research progress of gold based mercury-free catalysts for acetylene hydrochlorination[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3589-3596.
曾军建, 赵基钢. 乙炔氢氯化金基无汞催化剂的研究进展[J]. 化工进展, 2022, 41(7): 3589-3596.
1 | CRUZ P P R, SILVA L C DA, FIUZA-JR R A, et al. Thermal dehydrochlorination of pure PVC polymer: Part I—Thermal degradation kinetics by thermogravimetric analysis[J]. Journal of Applied Polymer Science, 2021, 138(25): 50598. |
2 | XU H, LUO G H. Green production of PVC from laboratory to industrialization: state-of-the-art review of heterogeneous non-mercury catalysts for acetylene hydrochlorination[J]. Journal of Industrial and Engineering Chemistry, 2018, 65: 13-25. |
3 | SHINODA K. The vapor-phase hydrochlorination of acetylene over metal chlorides supported on activated carbon[J]. Chemistry Letters, 1975, 4(3): 219-220. |
4 | NKOSI B, COVILLE N J, HUTCHINGS G J. Vapour phase hydrochlorination of acetylene with group Ⅷ and IB metal chloride catalysts[J]. Applied Catalysis, 1988, 43(1): 33-39. |
5 | HUTCHINGS G J.Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts[J]. Journal of Catalysis, 1985, 96(1): 292-295. |
6 | 岩崎孝雄. 塩化ビニルの製造法: JP, 昭51-101905[P]. 1976-09-08. |
7 | CONTE M, CARLEY A F, HEIRENE C, et al. Hydrochlorination of acetylene using a supported gold catalyst: a study of the reaction mechanism[J]. Journal of Catalysis, 2007, 250(2): 231-239. |
8 | MALTA G, KONDRAT S A, FREAKLEY S J, et al. Identification of single-site gold catalysis in acetylene hydrochlorination[J]. Science, 2017, 355(6332): 1399-1403. |
9 | KAISER S K, LIN R, MITCHELL S, et al. Controlling the speciation and reactivity of carbon-supported gold nanostructures for catalysed acetylene hydrochlorination[J]. Chemical Science, 2019, 10 (2):359-369. |
10 | TIAN X H, HONG G T, JIANG B B, et al. Efficient Au0/C catalyst synthesized by a new method for acetylene hydrochlorination[J]. RSC Advances, 2015, 5(57): 46366-46371. |
11 | CONTE M, CARLEY A F, ATTARD G, et al. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts[J]. Journal of Catalysis, 2008, 257(1):190-198. |
12 | NKOSI B, COVILLE N J, HUTCHINGS G J, et al. Hydrochlorination of acetylene using gold catalysts: a study of catalyst deactivation[J]. Journal of Catalysis, 1991, 128(2): 366-377 . |
13 | WANG Y, ZHU M Y, KANG L H, et al. Neutral Au n (n = 3-10) clusters catalyze acetylene hydrochlorination: a density functional theory study[J]. RSC Advances, 2014, 4(72): 38466-38473. |
14 | DAI B, WANG Q Q, YU F, et al. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination[J]. Scientific Reports, 2015, 5: 10553. |
15 | NKOSI B, ADAMS M D, COVILLE N J, et al. Hydrochlorination of acetylene using carbon-supported gold catalysts: a study of catalyst reactivation[J]. Journal of Catalysis, 1991, 128(2): 378-386. |
16 | WANG S J, SHEN B X, SONG Q L. Kinetics of acetylene hydrochlorination over bimetallic Au-Cu/C catalyst[J]. Catalysis Letters, 2010, 134(1/2): 102-109. |
17 | DONG Y Z, ZHANG H Y, LI W, et al. Bimetallic Au-Sn/AC catalysts for acetylene hydrochlorination[J]. Journal of Industrial and Engineering Chemistry, 2016, 35: 177-184. |
18 | ZHANG H Y, LI W, LI X Q, et al. Non-mercury catalytic acetylene hydrochlorination over bimetallic Au-Ba(Ⅱ)/AC catalysts[J]. Catalysis Science & Technology, 2015, 5(3): 1870-1877. |
19 | PU Y F, ZHANG J L, WANG X, et al. Bimetallic Au-Ni/CSs catalysts for acetylene hydrochlorination[J]. Catalysis Science & Technology, 2014, 4(12): 4426-4432. |
20 | ZHAO J, XU J T, XU J H, et al. Activated-carbon-supported gold-cesium(Ⅰ) as highly effective catalysts for hydrochlorination of acetylene to vinyl chloride[J]. ChemPlusChem, 2015, 80(1): 196-201. |
21 | ZHOU K, WANG W, ZHAO Z, et al. Synergistic gold-bismuth catalysis for non-mercury hydrochlorination of acetylene to vinyl chloride monomer[J]. ACS Catalysis, 2014, 4(9): 3112-3116. |
22 | ZHANG H Y, DAI B, LI W, et al. Non-mercury catalytic acetylene hydrochlorination over spherical activated-carbon-supported Au-Co(Ⅲ)-Cu(Ⅱ) catalysts[J]. Journal of Catalysis, 2014, 316: 141-148. |
23 | ZHAO J, ZHANG T T, DI X X, et al. Activated carbon supported ternary gold-cesium(Ⅰ)-indium(Ⅲ) catalyst for the hydrochlorination of acetylene[J]. Catalysis Science & Technology, 2015, 5(11): 4973-4984. |
24 | WANG L, SHEN B X, ZHAO J G, et al. Trimetallic Au-Cu-K/AC for acetylene hydrochlorination[J]. The Canadian Journal of Chemical Engineering, 2017, 95(6): 1069-1075. |
25 | BISHOP P, CARTHEY N, et al. Catalyst comprising gold and a sulphur containing ligand on a support and method for its preparation. WO 2013/008004A3[P]. 2013-05-16. |
26 | JOHNSTON P, CARTHEY N, HUTCHINGS G J. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination[J]. Journal of the American Chemical Society, 2015, 137(46): 14548-14557. |
27 | QI X Y, LI W, GU J J, et al. Gold-glutathione complex catalysts with carbon support for non-mercury catalytic acetylene hydrochlorination[J]. RSC Advances, 2016, 6(107): 105110-105118. |
28 | YIN X, HUANG C F, KANG L H, et al. Novel AuCl3-thiourea catalyst with a low Au content and an excellent catalytic performance for acetylene hydrochlorination[J]. Catalysis Science & Technology, 2016, 6(12): 4254-4259. |
29 | ZHOU K, JIA J C, LI C H, et al. A low content Au-based catalyst for hydrochlorination of C2H2 and its industrial scale-up for future PVC processes[J]. Green Chemistry, 2015, 17(1): 356-364. |
30 | DONG Y Z, LI W, YAN Z, et al. Hydrochlorination of acetylene catalyzed by an activated carbon supported chlorotriphenylphosphine gold complex[J]. Catalysis Science & Technology, 2016, 6(22): 7946-7955. |
31 | HUANG C F, ZHU M Y, KANG L H, et al. Active carbon supported TiO2-AuCl3/AC catalyst with excellent stability for acetylene hydrochlorination reaction[J]. Chemical Engineering Journal, 2014, 242: 69-75. |
32 | XU H, ZHOU K, SI J K, et al. A ligand coordination approach for high reaction stability of an Au-Cu bimetallic carbon-based catalyst in the acetylene hydrochlorination process[J]. Catalysis Science & Technology, 2016, 6(5): 1357-1366. |
33 | DAI B, LI X Y, ZHANG J L, et al. Application of mesoporous carbon nitride as a support for an Au catalyst for acetylene hydrochlorination[J]. Chemical Engineering Science, 2015, 135: 472-478. |
34 | YANG X D, JIANG C H, YANG Z M, et al. Hydrochlorination of acetylene using SiC foam supported structured C/Au catalysts[J]. Journal of Materials Science & Technology, 2014, 30(5): 434-440. |
35 | ZHAO J G, ZENG J J, CHENG X G, et al. An Au-Cu bimetal catalyst for acetylene hydrochlorination with renewable γ-Al2O3 as the support[J]. RSC Advances, 2015, 5(22): 16727-16734. |
36 | LI X Y, ZHU M Y, DAI B. AuCl3 on polypyrrole-modified carbon nanotubes as acetylene hydrochlorination catalysts[J]. Applied Catalysis B: Environmental, 2013, 142/143: 234-240. |
37 | ZHAO J, XU J T, XU J H, et al. Enhancement of Au/AC acetylene hydrochlorination catalyst activity and stability via nitrogen-modified activated carbon support[J]. Chemical Engineering Journal, 2015, 262: 1152-1160. |
38 | DI X X, ZHAO J, YU Y, et al. One-pot synthesis of nitrogen and sulfur co-doped activated carbon supported AuCl3 as efficient catalysts for acetylene hydrochlorination[J]. Chinese Chemical Letters, 2016, 27(9): 1567-1571. |
39 | WANG B G, YU L, ZHANG J L, et al. Phosphorus-doped carbon supports enhance gold-based catalysts for acetylene hydrochlorination[J]. RSC Advances, 2014, 4(31): 15877-15885. |
40 | JIA Y, HU R S, ZHOU Q H, et al. Boron-modified activated carbon supporting low-content Au-based catalysts for acetylene hydrochlorination[J]. Journal of Catalysis, 2017, 348: 223-232. |
41 | CHEN K, KANG L H, ZHU M Y, et al. Mesoporous carbon with controllable pore sizes as a support of the AuCl3 catalyst for acetylene hydrochlorination[J]. Catalysis Science & Technology, 2015, 5(2): 1035-1040. |
42 | ZHANG H Y, DAI B, WANG X G, et al. Hydrochlorination of acetylene to vinyl chloride monomer over bimetallic Au-La/SAC catalysts[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 49-54. |
43 | GU J, DU Q, HAN Y, et al. Nitrogen-doped carbon supports with terminated hydrogen and their effects on active gold species: a density functional study[J]. Physical Chemistry Chemical Physics, 2014, 16(46): 25498-25507. |
44 | 张善正, 康丽华, 代斌. 氮改性对乙炔氢氯化反应催化剂吸附性能的影响[J]. 石河子大学学报(自然科学版), 2013, 31(4): 494-498. |
ZHANG S Z, KANG L H, DAI B. Effect of N-modification on the adsorption performance of acetylene hydrochlorination catalyst[J]. Journal of Shihezi University (Natural Science), 2013, 31(4): 494-498. | |
45 | WANG L, SHEN B X, et al.Trimetallic Au-Cu-La/AC for acetylene hydrochlorination in a multi-tubular fixed bed reactor[J].Iranian Journal of Chemistry & Chemical Engineering: International English Edition, 2020, 39(1): 201-207. |
46 | 李伟, 赵驰峰. 金基无汞触媒研发及工业应用[R]. 中国聚氯乙烯生产汞消减技术交流研讨会, 北京, 2019. |
LI W, ZHAO C F.Gold-based mercury-free catalyst research and development and industrial application[R].Seminar on mercury abatement technology in PVC production in China, Beijing, 2019. | |
47 | 陈财来, 恺峰. 电石法PVC成套绿色技术取得突破[J]. 塑料工业, 2015, 43(11): 84. |
CHEN C L, KAI F. Breakthroughs in complete sets of calcium carbide PVC green technology[J].Plastic science and technology, 2015, 283(11): 31. |
[1] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[2] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[3] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[4] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[5] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[6] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[7] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
[8] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[9] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[10] | WANG Jia, PENG Chong, TANG Lei, LU Anhui. Modification of the active phase structure of residue hydrogenation catalyst and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1811-1821. |
[11] | HOU Limin, XU Jie, FU Shancong, WU Wenfei. Effect of Cu modification on NH3-SCR denitration of rare earth tailings catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 765-773. |
[12] | LI Naizhen, SUN Ruijie, QIN Zhifeng, MIAO Maoqian, WU Qiongxiao, CHANG Liping, SUN Pengcheng, ZENG Jian, LIU Yi. Effects of constant carbon atmosphere on the activity, selectivity and coking of catalysts in hydrodesulfurization of coke oven gas [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 783-793. |
[13] | YIN Keke, WANG Yugao, GU Bao, SHEN Jun. Direction esterification of bio-based succinate catalyzed by solid super acid SO42-/ZrO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5213-5222. |
[14] | LIU Liang, WANG Zhaoxi, LI Xinlong, ZHANG Gaoshan, WANG Shouyang, ZHANG Linlin, LU Chang, QING Mengxia. Research progress on the improvement of vanadium and titanium denitrification catalysts against ammonium bisulfate poisoning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 215-225. |
[15] | ZHANG Qi, WANG Tao, ZHANG Xuebing, MENG Xiangkun, LYU Yijun, MEN Zhuowu. Effects of reduction conditions on fused iron catalyst for high temperature Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 239-246. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 474
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 439
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |