Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (6): 3051-3062.DOI: 10.16085/j.issn.1000-6613.2021-1591
• Materials science and technology • Previous Articles Next Articles
TIAN Zhui(), ZHANG Zhen, LU Man, YANG Bin, YANG Jinhui(), ZHOU Shukui, WEI Bai, LI Cong
Received:
2021-07-27
Revised:
2021-11-17
Online:
2022-06-21
Published:
2022-06-10
Contact:
YANG Jinhui
田追(), 张震, 卢嫚, 杨斌, 杨金辉(), 周书葵, 魏柏, 李聪
通讯作者:
杨金辉
作者简介:
田追(1997—),男,硕士研究生,研究方向为水处理理论与技术。E-mail:基金资助:
CLC Number:
TIAN Zhui, ZHANG Zhen, LU Man, YANG Bin, YANG Jinhui, ZHOU Shukui, WEI Bai, LI Cong. New adsorption materials for removing fluoride from wastewater: a review[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3051-3062.
田追, 张震, 卢嫚, 杨斌, 杨金辉, 周书葵, 魏柏, 李聪. 新型除氟吸附材料的研究进展[J]. 化工进展, 2022, 41(6): 3051-3062.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1591
吸附剂 | pH适用范围 | 吸附容量/mg·g-1 | 吸附机理 | 热力学/动力学 | 参考文献 |
---|---|---|---|---|---|
锆改性茶籽壳生物炭 | 3~9 | 11.04 | 静电吸附 | Langmuir/二级 | [ |
锆浸渍核桃壳生物炭 | 3~12 | 6.38 | 静电吸附 | Freundlich/二级 | [ |
炭化椰子树根 | — | 2.04 | 化学吸附 | Langmuir/二级 | [ |
硝酸活化植物树皮生物炭 | 2~11 | 1.65 | — | Langmuir/二级 | [ |
超声空化诱导合成锆浸渍生物炭 | 2~12 | 5.40 | 离子交换 | Langmuir/二级 | [ |
钙修饰花生壳生物炭 | 5~7 | 1.32 | 表面吸附 | Langmuir/二级 | [ |
氧化铁复合木片生物炭 | 5 | 0.42 | 静电吸附 | — | [ |
吸附剂 | pH适用范围 | 吸附容量/mg·g-1 | 吸附机理 | 热力学/动力学 | 参考文献 |
---|---|---|---|---|---|
锆改性茶籽壳生物炭 | 3~9 | 11.04 | 静电吸附 | Langmuir/二级 | [ |
锆浸渍核桃壳生物炭 | 3~12 | 6.38 | 静电吸附 | Freundlich/二级 | [ |
炭化椰子树根 | — | 2.04 | 化学吸附 | Langmuir/二级 | [ |
硝酸活化植物树皮生物炭 | 2~11 | 1.65 | — | Langmuir/二级 | [ |
超声空化诱导合成锆浸渍生物炭 | 2~12 | 5.40 | 离子交换 | Langmuir/二级 | [ |
钙修饰花生壳生物炭 | 5~7 | 1.32 | 表面吸附 | Langmuir/二级 | [ |
氧化铁复合木片生物炭 | 5 | 0.42 | 静电吸附 | — | [ |
水滑石类别 | pH适用范围 | 吸附容量/mg·g–1 | 吸附机理 | 热力学/动力学 | 参考文献 |
---|---|---|---|---|---|
Li-Al型类水滑石 | 6.5~8.0 | 123.46 | 离子交换 | Freundlich/二级 | [ |
Mg-Al-NO3型类水滑石 | 10.49 | 57.14 | 氟离子插层和氟代诺三水铝石沉淀 | Langmuir/二级 | [ |
Mg-Al-Fe类水滑石 | 3~8 | 33.67 | — | Langmuir/二级 | [ |
Ni-Al型类水滑石 | 6.6~7.5 | 0.45 | 离子交换 | Langmuir/二级 | [ |
Co-Al型类水滑石 | 6.9~7.3 | 0.31 | 离子交换 | Langmuir/二级 | [ |
Mg-Al型类水滑石 | 7.1~8.2 | 0.37 | 离子交换 | Langmuir/二级 | [ |
水滑石类别 | pH适用范围 | 吸附容量/mg·g–1 | 吸附机理 | 热力学/动力学 | 参考文献 |
---|---|---|---|---|---|
Li-Al型类水滑石 | 6.5~8.0 | 123.46 | 离子交换 | Freundlich/二级 | [ |
Mg-Al-NO3型类水滑石 | 10.49 | 57.14 | 氟离子插层和氟代诺三水铝石沉淀 | Langmuir/二级 | [ |
Mg-Al-Fe类水滑石 | 3~8 | 33.67 | — | Langmuir/二级 | [ |
Ni-Al型类水滑石 | 6.6~7.5 | 0.45 | 离子交换 | Langmuir/二级 | [ |
Co-Al型类水滑石 | 6.9~7.3 | 0.31 | 离子交换 | Langmuir/二级 | [ |
Mg-Al型类水滑石 | 7.1~8.2 | 0.37 | 离子交换 | Langmuir/二级 | [ |
1 | WEI W, PANG S J, SUN D J. The pathogenesis of endemic fluorosis: research progress in the last 5 years[J]. Journal of Cellular and Molecular Medicine, 2019, 23(4): 2333-2342. |
2 | 毛宏远. 河南省农村饮水氟超标的治理[J]. 河南水利与南水北调, 2020, 49(5): 22-23. |
MAO Hongyuan. Treatment of excessive fluorine in drinking water in rural areas of Henan[J]. Henan Water Resources & South-to-North Water Diversion, 2020, 49(5): 22-23. | |
3 | 张小东, 赵飞燕, 王永旺, 等. 废水除氟技术研究现状[J]. 无机盐工业, 2019, 51(12): 6-9, 19. |
ZHANG Xiaodong, ZHAO Feiyan, WANG Yongwang, et al. Research status of wastewater defluoridation technology[J]. Inorganic Chemicals Industry, 2019, 51(12): 6-9, 19. | |
4 | 郑丹阳, 耿存珍. 水体除氟方法的最新研究进展[J]. 环境科学与管理, 2014, 39(11): 31-34. |
ZHENG Danyang, GENG Cunzhen. Research progress for removing fluorine from water[J]. Environmental Science and Management, 2014, 39(11): 31-34. | |
5 | 邸文革. 混凝过滤法除氟的试验研究[J]. 给水排水, 1996, 22(5): 57-58. |
DI Wenge. Experimental study on fluoride removal by coagulation filtration [J]. Water & Wastewater Engineering, 1996, 22(5): 57-58. | |
6 | 过磷酸钙离子交换除氟效果好[J]. 无机盐工业, 1976, 8(1): 27. |
Calcium superphosphate ion exchange has good fluoride removal effect [J]. Inorganic Chemicals Inoustry, 1976, 8(1): 27. | |
7 | 朱顺根. 含氟废水的处理[J]. 化学世界, 1990, 31(7): 293-296. |
ZHU Shungen. Treatment of fluorine containing wastewater [J]. Huaxue Shijie (Chemical World), 1990, 31(7): 293-296. | |
8 | 余琴芳, 镇祥华, 邹磊, 等. 含氟工业废水深度处理工艺方案[J]. 净水技术, 2020, 39(5): 140-146. |
YU Qinfang, ZHEN Xianghua, ZOU Lei, et al. Solutions of advanced treatment process for industrial fluoride wastewater[J]. Water Purification Technology, 2020, 39(5): 140-146. | |
9 | 张海阳, 高柏, 樊骅, 等. XRD和FTIR对Ce/γ-Al2O3除氟除砷的机理研究[J].光谱学与光谱分析, 2020, 40(9): 2869-2874. |
ZHANG H Y, GAO B, FAN H, et al. Mechanism of fluoride and arsenic removal by Ce/γ-Al2O3 based on XRD and FTIR [J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2869-2874. | |
10 | HAN M Y, ZHANG J H, HU Y Y, et al. Preparation of novel magnetic microspheres with the La and Ce-bimetal oxide shell for excellent adsorption of fluoride and phosphate from solution[J]. Journal of Chemical & Engineering Data, 2019, 64(8): 3641-3651. |
11 | 邓祥敏, 张贤明, 吴云. 吸附剂在废油资源化技术中的应用和研究进展[J]. 环境科学与技术, 2015, 38(6): 117-122, 240. |
DENG Xiangmin, ZHANG Xianming, WU Yun. Progress of application and research on adsorbents for regenerating waste oil[J]. Environmental Science & Technology, 2015, 38(6): 117-122, 240. | |
12 | GONG Y X, LI J Y, ZHANG Y Y, et al. Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode [J]. Journal of Hazardous Materials, 2016, 304: 320-328. |
13 | 何瑞敏. 改性高分子除氟吸附材料的研究进展[J]. 高分子通报, 2018(12): 1-8. |
HE Ruimin. Research progress in the modified polymer-based fluoride adsorbing materials[J]. Polymer Bulletin, 2018(12): 1-8. | |
14 | 白雨平, 郜玉楠, 郭海军, 等. 地下水氟污染的壳聚糖吸附处理工艺[J]. 净水技术, 2012, 31(2): 30-33. |
BAI Yuping, GAO Yunan, GUO Haijun, et al. Chitosan adsorption process for treatment of fluoride pollution in groundwater[J]. Water Purification Technology, 2012, 31(2): 30-33. | |
15 | 张永勇, 贾瑛, 许国根, 等. 壳聚糖及其衍生物在处理含氟水中的应用[J]. 化工技术与开发, 2014, 43(1): 51-53. |
ZHANG Yongyong, JIA Ying, XU Guogen, et al. Application of chitosan and its derivatives in treatment of fluoride contaminated water[J]. Technology & Development of Chemical Industry, 2014, 43(1): 51-53. | |
16 | YE H, ZHAO B Y, ZHOU Y H, et al. Recent advances in adsorbents for the removal of phthalate esters from water: material, modification, and application[J]. Chemical Engineering Journal, 2021, 409: 128127. |
17 | 李永富. 基于新型交联剂的改性壳聚糖制备及除氟性能研究[D]. 青岛: 中国海洋大学, 2011. |
LI Yongfu. Study on the preparation and defluoridation properties of modified chitosan using new crosslinking agent[D]. Qingdao: Ocean University of China, 2011. | |
18 | 郜玉楠, 包顺宇, 茹雅芳, 等. 硫酸铝壳聚糖改性沸石分子筛除氟的性能研究[J]. 安全与环境学报, 2020, 20(3): 1105-1111. |
GAO Yunan, BAO Shunyu, RU Yafang, et al. On defluorination performance of molecular sieve of aluminum sulfate chitosan modified zeolite[J]. Journal of Safety and Environment, 2020, 20(3): 1105-1111. | |
19 | 陈静娴, 陈红红, 李晓华, 等. 载锆壳聚糖-沸石复合剂去除水中F-的吸附特征研究[J]. 离子交换与吸附, 2017, 33(6): 537-546. |
CHEN Jingxian, CHEN Honghong, LI Xiaohua, et al. Adsorption characteristics of chitosan loaded zirconium-zeolite composite adsorbents for removal of F- from water[J]. Ion Exchange and Adsorption, 2017, 33(6): 537-546. | |
20 | 喻文超, 郭亚丹, 黄照杰, 等. Zr(Ⅳ)改性壳聚糖小球对F-的吸附性能研究[J]. 环境污染与防治, 2017, 39(8): 873-876, 883. |
YU Wenchao, GUO Yadan, HUANG Zhaojie, et al. Study on the adsorption of F- by Zr(Ⅳ) modified chitosan beads[J]. Environmental Pollution & Control, 2017, 39(8): 873-876, 883. | |
21 | 厉梦琳, 陈萍华, 蒋华麟, 等. 3Y-ZrO2/壳聚糖复合材料的制备及其对氟离子吸附性能研究[J]. 南昌航空大学学报(自然科学版), 2016, 30(4): 50-56. |
LI Menglin, CHEN Pinghua, JIANG Hualin, et al. The adsorption characteristics of composite of 3Y-ZrO2/ chitosan[J]. Journal of Nanchang Hangkong University (Natural Sciences), 2016, 30(4): 50-56. | |
22 | 张夏红, 何立芳, 欧阳清海, 等. 稀土铈改性壳聚糖微球对氟离子的吸附[J]. 龙岩学院学报, 2016, 34(5): 107-111, 116. |
ZHANG Xiahong, HE Lifang, OUYANG Qinghai, et al. Study on the adsorption properties of fluoride ion by rare-earth cerium modified chitosan microspheres[J]. Journal of Longyan University, 2016, 34(5): 107-111, 116. | |
23 | 卢丽霞, 雷彤, 林群龙, 等. 壳聚糖复合微球的制备及其对F-的吸附[J]. 化工时刊, 2004, 18(2): 45-46. |
LU Lixia, LEI Tong, LIN Qunlong, et al. Study on preparation and absorption of fluorion of chitosan composite micropheres[J]. Chemical Industry Times, 2004, 18(2): 45-46. | |
24 | 谢燕华, 刘国明, 杨汝馨, 等. Fe(Ⅲ)-La(Ⅲ)/壳聚糖复合材料对地下水中氟的吸附性能研究[J]. 水处理技术, 2014, 40(10): 42-46. |
XIE Yanhua, LIU Guoming, YANG Ruxin, et al. Fluoride adsorption behavior from groundwater using Fe(Ⅲ)-La(Ⅲ)/chitosan composite material[J]. Technology of Water Treatment, 2014, 40(10): 42-46. | |
25 | 王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448. |
WANG Huan, YANG Dongjie, QIAN Yong, et al. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448. | |
26 | WANG Y, XIONG Y, WANG J Y, et al. Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: highly efficient swelling behaviors and super-sorbent for dye removal from wastewater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520: 903-913. |
27 | YAN M F, LI Z L. Microwave-assisted functionalized lignin with dithiocarbamate for enhancing adsorption of Pb( Ⅱ )[J]. Materials Letters, 2016, 170: 135-138. |
28 | 崔俊峰, 赵可江, 李宾宾, 等. 改性木质素磺酸钙及其对氟离子(F-)的吸附研究[J]. 应用化工, 2021, 50(6): 1546-1549. |
CUI Junfeng, ZHAO Kejiang, LI Binbin, et al. Preparation of modified lignosulphonate and its adsorption of F- [J]. Applied Chemical Industry, 2021, 50(6): 1546-1549. | |
29 | 巫龙辉, 卢生昌, 林新兴, 等. 纤维素基超疏水材料的研究进展[J]. 林产化学与工业, 2016, 36(6): 119-126. |
WU Longhui, LU Shengchang, LIN Xinxing, et al. Research progress in superhydrophobic cellulose-based materials[J]. Chemistry and Industry of Forest Products, 2016, 36(6): 119-126. | |
30 | LUKOJKO E, TALIK E, GAGOR A, et al. Highly selective determination of ultratrace inorganic arsenic species using novel functionalized miniaturized membranes[J]. Analytica Chimica Acta, 2018, 1008: 57-65. |
31 | ZHAO F P, REPO E, SONG Y, et al. Polyethylenimine-cross-linked cellulose nanocrystals for highly efficient recovery of rare earth elements from water and a mechanism study[J]. Green Chemistry, 2017, 19(20): 4816-4828. |
32 | CHEN Y N, ZHAO W, ZHAO H, et al. Efficient removal of Pb(Ⅱ), Cd(Ⅱ), Cu(Ⅱ) and Ni(Ⅱ) from aqueous solutions by tetrazole-bonded bagasse[J]. Chemical Physics, 2020, 529: 110550. |
33 | LUO T, TIAN X, YANG C, et al. Polyethylenimine-functionalized corn bract, an agricultural waste material, for efficient removal and recovery of Cr(Ⅵ) from aqueous solution[J]. Journal of Agricultural and Food Chemistry, 2017, 65(33): 7153-7158. |
34 | 孟令蝶, 王凤奇, 李金培, 等. 多乙烯多胺改性纤维素及其对水中砷、氟、铬吸附性能研究[J]. 高分子学报, 2014(8): 1070-1077. |
MENG Lingdie, WANG Fengqi, LI Jinpei, et al. Preparation of polyethylene polyamine-modified cellulose and its adsorbability for as, F and Cr anions[J]. Acta Polymerica Sinica, 2014(8): 1070-1077. | |
35 | 钱晓荣, 王连军, 冒爱荣, 等. 季铵化改性木屑纤维素的制备及对氟离子的吸附研究[J]. 环境污染与防治, 2009, 31(10): 33-35, 56. |
QIAN Xiaorong, WANG Lianjun, MAO Airong, et al. Preparation of quaternary ammonium modified sawdust cellulose for adsorption of fluoride[J]. Environmental Pollution & Control, 2009, 31(10): 33-35, 56. | |
36 | MO M X, ZENG Q X, LI M Y. Study of the fluorine adsorption onto zirconium oxide deposited strong alkaline anion exchange fiber[J]. Journal of Applied Polymer Science, 2018, 135(7): 45855. |
37 | 王梅. Mg-Al-Zr三金属复合纤维素氟吸附材料的制备和性能表征[D]. 广州: 华南农业大学, 2017. |
WANG Mei. Preparation and defluoridation properties of Mg-Al-Zr triple-metal cellulose composites[D]. Guangzhou: South China Agricultural University, 2017. | |
38 | DONG Q, YANG D X, LUO L, et al. Engineering porous biochar for capacitive fluorine removal[J]. Separation and Purification Technology, 2021, 257: 117932. |
39 | 侯笛, 卫栋慧, 董岁明, 等. 铁改性花生壳生物炭除氟性能及机理研究[J]. 应用化工, 2021, 50(2): 285-289. |
HOU Di, WEI Donghui, DONG Suiming, et al. Performance and mechanism of fluoride adsorption from water by iron-modified peanut shell biochar[J]. Applied Chemical Industry, 2021, 50(2): 285-289. | |
40 | 王建国. 镧改性柚子皮生物炭除氟性能及机理研究[D]. 北京: 中国地质大学(北京), 2018. |
WANG Jianguo. Performance and mechanism of fluoride adsorption from water by lanthanum-modified pomelo peel biochar[D]. Beijing: China University of Geosciences, 2018. | |
41 | 李春鹭. 聚吡咯负载花生壳质生物炭去除水中氟的研究[D]. 北京: 中国地质大学(北京), 2017. |
LI Chunlu. Polypyrrole-grafted peanut shell biochar as a potential sorbent for fluoride removal from aqueous solution[D]. Beijing: China University of Geosciences, 2017. | |
42 | BOMBUWALA DEWAGE N, LIYANAGE A S, PITTMAN C U, et al. Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar[J]. Bioresource Technology, 2018, 263: 258-265. |
43 | LEE J I, HONG S H, LEE C G, et al. Fluoride removal by thermally treated egg shells with high adsorption capacity, low cost, and easy acquisition[J]. Environmental Science and Pollution Research, 2021, 28(27): 35887-35901. |
44 | 梅丽萍. 锆改性挤压茶渣和茶籽壳生物炭除氟性能探究[D]. 合肥: 安徽农业大学, 2020. |
MEI Liping. Research on the defluorination performance of zirconium modified extruded tea waste and camellia oleifera seed shell biochar[D]. Hefei: Anhui Agricultural University, 2020. | |
45 | RAJAN M, ALAGUMUTHU G. Study of fluoride affinity by zirconium impregnated walnut shell carbon in aqueous phase: kinetic and isotherm evaluation[J]. Journal of Chemistry, 2013, 2013: 1-8. |
46 | GEORGE A M, TEMBHURKAR A R. Analysis of equilibrium, kinetic, and thermodynamic parameters for biosorption of fluoride from water onto coconut (Cocos nucifera Linn.) root developed adsorbent[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 92-99. |
47 | RAVULAPALLI S, KUNTA R. Defluoridation studies using active carbon derived from the barks of Ficus racemosa plant[J]. Journal of Fluorine Chemistry, 2017, 193: 58-66. |
48 | MULLICK A, NEOGI S. Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption[J]. Ultrasonics Sonochemistry, 2018, 45: 65-77. |
49 | 徐晶. 钙修饰生物质炭除氟机理及除氟再生一体化装置研究[D]. 天津: 天津理工大学, 2018. |
XU Jing. The research of defluoridation mechanism with calcium modified biochar and integrated equipment for defluoridation and regeneration[D]. Tianjin: Tianjin University of Technology, 2018. | |
50 | MANDOREBA C, GWENZI W, CHAUKURA N. Defluoridation of drinking water using a ceramic filter decorated with iron oxide-biochar composites[J]. International Journal of Applied Ceramic Technology, 2021, 18(4): 1321-1329. |
51 | 王玉莲, 廖卫平, 刘振波, 等. Mg-Al水滑石及焙烧态样品吸附水中氟离子的研究[J]. 烟台大学学报(自然科学与工程版), 2009, 22(1): 23-29. |
WANG Yulian, LIAO Weiping, LIU Zhenbo, et al. Adsorption of fluoride ion from aqueous solution over fresh and calcined Mg-Al hydrotalcites[J]. Journal of Yantai University (Natural Science and Engineering Edition), 2009, 22(1): 23-29. | |
52 | TANG D D, ZHANG G K. Efficient removal of fluoride by hierarchical Ce-Fe bimetal oxides adsorbent: thermodynamics, kinetics and mechanism[J]. Chemical Engineering Journal, 2016, 283: 721-729. |
53 | 成娅, 周家斌, 王磊, 等. 焙烧态锂铝水滑石对水中氟离子吸附性能研究[J]. 环境污染与防治, 2012, 34(2): 34-38. |
CHENG Ya, ZHOU Jiabin, WANG Lei, et al. Adsorption of fluorion from aqueous solution by calcined layered lithium/aluminum hydroxides[J]. Environmental Pollution & Control, 2012, 34(2): 34-38. | |
54 | 李洁祥, 莫龙庭, 谢李娜, 等. 利用水滑石及其煅烧产物去除水中氟[J]. 环境科学与技术, 2013, 36(10): 191-196. |
LI Jiexiang, MO Longting, XIE Lina, et al. Water defluoridation by hydrotalcite and its calcination product[J]. Environmental Science & Technology, 2013, 36(10): 191-196. | |
55 | 郭宇, 岳秀萍, 刘吉明. Mg/Al/Fe水滑石的焙烧产物对F-的吸附[J]. 环境工程学报, 2015, 9(12): 5921-5926. |
GUO Yu, YUE Xiuping, LIU Jiming. Adsorption of fluoride ion by calcined Mg/Al/Fe hydrotalcite[J]. Chinese Journal of Environmental Engineering, 2015, 9(12): 5921-5926. | |
56 | JIMÉNEZ-NÚÑEZ M L, SOLACHE-RÍOS M, OLGUÍN M T. Fluoride sorption from aqueous solutions and drinking water by magnesium, cobalt, and nickel hydrotalcite-like compounds in batch and column systems[J]. Separation Science and Technology, 2010, 45(6): 786-793. |
57 | KAMEDA T, YAMAMOTO Y, KUMAGAI S, et al. Effect of the specific surface area of MgO on the treatment of boron and fluorine[J]. Applied Water Science, 2020, 10(5): 1-6. |
58 | 李艳军, 张浩, 韩跃新, 等. 赤泥资源化回收利用研究进展[J]. 金属矿山, 2021(4): 1-19. |
LI Yanjun, ZHANG Hao, HAN Yuexin, et al. Research progress on resource recycling and utilization of red mud[J]. Metal Mine, 2021(4): 1-19. | |
59 | TOR A, DE DANAOGLU N, ARSLAN G, et al. Removal of fluoride from water by using granular red mud: batch and column studies[J]. Journal of Hazardous Materials, 2009, 164(1): 271-278. |
60 | 李德贵, 覃铭, 何兵, 等. 赤泥除氟剂的物相组成及其除氟性能[J]. 环境工程学报, 2017, 11(2): 1159-1163. |
LI Degui, QIN Ming, HE Bing, et al. Phase composition and fluoride removal performance of red mud defluoridator[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 1159-1163. | |
61 | 李建萍, 王存政, 李辉, 等. 粉煤灰处理含氟废水的正交试验研究[J]. 世界地质, 2004, 23(3): 279-282. |
LI Jianping, WANG Cunzheng, LI Hui, et al. Orthogonal experiment study on removal of fluoride from wastewater by fly ash[J]. World Geology, 2004, 23(3): 279-282. | |
62 | 程婷, 陈晨, 吴伟, 等. 粉煤灰合成沸石对磷酸根离子、氟离子与六价铬离子的竞争吸附研究[J]. 材料导报, 2015, 29(S1): 305-309. |
CHENG Ting, CHEN Chen, WU Wei, et al. Competitive adsorption of phosphate ion, fluoride ion and chromium( Ⅵ ) ion by zeolite synthesized from coal fly ash[J]. Materials Review, 2015, 29(S1): 305-309. | |
63 | 张艳丽, 张建生. 改性海泡石-粉煤灰复剂处理含氟废水的研究[J]. 化工矿物与加工, 2007, 36(4): 17-19, 23. |
ZHANG Yanli, ZHANG Jiansheng. Treatment of fluoride-bearing wastewater with modified sepiolite-fly ash composite[J]. Industrial Minerals & Processing, 2007, 36(4): 17-19, 23. | |
64 | 邓慧. 纳米TiO2对氟离子吸附性能研究[J]. 工业用水与废水, 2013, 44(4): 17-20. |
DENG Hui. Adsorption performance of nanocrystalline TiO2 to fluoride ions[J]. Industrial Water & Wastewater, 2013, 44(4): 17-20. | |
65 | LIM M H, SADHASIVAM T, JUNG D S, et al. Removal of hazardous hydrogen fluoride (HF) from water through homogeneous nanostructured CaO-SiO2 sorbents: optimization of binder[J]. Water, Air, & Soil Pollution, 2018, 229(8): 1-10. |
66 | HAYDAR M AL, ABID H R, SUNDERLAND B, et al. Multimetal organic frameworks as drug carriers: aceclofenac as a drug candidate[J]. Drug Design, Development and Therapy, 2018, 13: 23-35. |
67 | LI W F, ZHANG T, LYU L, et al. Room-temperature synthesis of MIL-100(Fe) and its adsorption performance for fluoride removal from water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126791. |
68 | 王程程, 孟凡丽, 杨梅. 磁性纳米材料Fe3O4@Ce(OH)3的制备及其除氟性能研究[J]. 环保科技, 2019, 25(1): 5-10, 15. |
WANG Chengcheng, MENG Fanli, YANG Mei. Preparation of magnetic nanomaterial Fe3O4@Ce(OH)3 and its fluoride removal performance[J]. Environmental Protection and Technology, 2019, 25(1): 5-10, 15. | |
69 | 方文侃, 李小娣, 方菁, 等. 新型材料磁性氧化锆的除氟效能[J]. 环境科学, 2019, 40(5): 2295-2301. |
FANG Wenkan, LI Xiaodi, FANG Jing, et al. Fluoride removal efficiency of novel material: magnetite core/zirconia shell nanocomposite[J]. Environmental Science, 2019, 40(5): 2295-2301. | |
70 | 方梦园, 赵天慧, 赵晓丽, 等. 碳纳米管对腐殖酸的吸附及其环境意义[J]. 环境化学, 2020, 39(10): 2897-2906. |
FANG Mengyuan, ZHAO Tianhui, ZHAO Xiaoli, et al. Effect of humic acid on adsorption and sedimentation of carboxylic multi-walled carbon nanotubes with different diameters[J]. Environmental Chemistry, 2020, 39(10): 2897-2906. | |
71 | 王曙光, 李延辉, 赵丹, 等. 碳纳米管负载氧化铝材料的制备及其吸附水中氟离子的研究[J]. 高等学校化学学报, 2003, 24(1): 95-99. |
WANG Shuguang, LI Yanhui, ZHAO Dan, et al. Studies on the preparation of alumina supported on carbon nanotubes and defluorination from absorbed water[J]. Chemical Research in Chinese Universities, 2003, 24(1): 95-99. | |
72 | LU M L, LIU H, PAN F K, et al. Adsorption of fluorine ion from water by composite nonwovens[J]. The Journal of the Textile Institute, 2021, 112(3): 363-369. |
73 | LI X L, YU X W, LIU L, et al. Preparation, characterization serpentine-loaded hydroxyapatite and its simultaneous removal performance for fluoride, iron and manganese[J]. RSC Advances, 2021, 11(27): 16201-16215. |
74 | 姜科, 赵甘林, 陈琳. 基于氟铝配位的离子交换法对氟的吸附研究[J]. 浙江化工, 2021, 52(2): 41-43. |
JIANG Ke, ZHAO Ganlin, CHEN Lin. Study on adsorption of fluorine by ion exchange method based on coordination of fluorine and aluminum[J]. Zhejiang Chemical Industry, 2021, 52(2): 41-43. | |
75 | CHEN C H, GABBAÏ F P. Exploiting the strong hydrogen bond donor properties of a borinic acid functionality for fluoride anion recognition[J]. Angewandte Chemie International Edition, 2018, 57(2): 521-525. |
76 | SUN B J, ZHANG L, WEI F, et al. In situ structural modification of bacterial cellulose by sodium fluoride[J]. Carbohydrate Polymers, 2020, 231: 115765. |
77 | TAO W, ZHONG H, PAN X B, et al. Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification[J]. Journal of Hazardous Materials, 2020, 384: 121373. |
78 | ALMEIDA R D, CAMPOS J C, SOUZA M M V M. Synthesis and characterization of hydrocalumite for removal of fluoride from aqueous solutions[J]. Environmental Science and Pollution Research, 2021, 28(18): 22439-22457. |
79 | ZHANG W, MAO Y Q, LU Y. Development of a novel Artemia eggshell-zirconium nanocomposite for efficient fluoride removal[J]. PLoS One, 2021, 16(1): e0244711. |
80 | WANG X Y, WEI J J, PENG W C, et al. Evaluation and DFT analysis of 3D porous rhombohedral Fe-modified MgO for removing fluoride efficiently[J]. Applied Surface Science, 2021, 552: 149423. |
81 | LEE J I, KANG J K, HONG S H, et al. Thermally treated Mytilus coruscus shells for fluoride removal and their adsorption mechanism[J]. Chemosphere, 2021, 263: 128328. |
[1] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[7] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[8] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[9] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[10] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[11] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[12] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[13] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[14] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[15] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |