Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2476-2486.DOI: 10.16085/j.issn.1000-6613.2021-1161
• Materials science and technology • Previous Articles Next Articles
ZHENG Xiaomei1,2(), LIN Rujing1,2, ZHOU Wenjing1,2, XU Ling1,2, ZHANG Hongning1,2, ZHANG Xinying1,2, XIE Li1,2()
Received:
2021-06-01
Revised:
2021-08-22
Online:
2022-05-24
Published:
2022-05-05
Contact:
XIE Li
郑小梅1,2(), 林茹晶1,2, 周文静1,2, 徐泠1,2, 张洪宁1,2, 张昕颖1,2, 谢丽1,2()
通讯作者:
谢丽
作者简介:
郑小梅(1993—),女,博士研究生。E-mail:基金资助:
CLC Number:
ZHENG Xiaomei, LIN Rujing, ZHOU Wenjing, XU Ling, ZHANG Hongning, ZHANG Xinying, XIE Li. Review on cathode materials for CO2 methanation assisted by microbial electrolytic cell[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2476-2486.
郑小梅, 林茹晶, 周文静, 徐泠, 张洪宁, 张昕颖, 谢丽. 微生物电解池辅助CO2甲烷化阴极材料的研究进展[J]. 化工进展, 2022, 41(5): 2476-2486.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1161
阴极材料 | 电极尺寸 | 反应器构型 | 接种培养物 | 基质 | 运行方式 /时间 | 温度/℃ | 阴极电势 (vs. Ag/AgCl)/V | 甲烷产率 | CE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|
活性炭颗粒 | 1.5g | 单室 | 厌氧污泥 (5.9g/L) | 乙酸钠 (3.2g/L) | 批实验 | 10 | 0.90 | 31mg CH4-COD/ g VSS | 60 | [ |
颗粒活性炭 | 8.45g | 双室 | 污水处理厂厌氧污(12.9g/L) | CO2 | 半连续流 | 30 | 0.58 | 65L/(m2·d) | 66 | [ |
石墨颗粒 | 27.6g | 0.9 | 62L/(m2·d) | 67 | ||||||
颗粒活性炭 | 13.87g | 双室 | 稳定MEC出水 | 乙酸钠 (1.64g/L) | 批实验 | 30 | 2.0~3.0 | 15.12m3/(m3·d) | 71.76 | [ |
碳毡 | 60cm2 | 单室 | 市政污泥池 厌氧污泥(10g/L) | 蜜糖 (44.7g/L) | 批实验 | 34 | 0.5 | 65.5mL/(L·d) | — | [ |
1 | 127.5mL/(L·d) | |||||||||
碳布 | 4×10cm | 单室 | 嗜热阳极MFC出水 | 乙酸钠 (0.8gCOD/L) | 批实验 | 55 | 0.8 | 1103mmol/ (m2·d) | — | [ |
碳纤维刷 | Φ2.5cm×12cm | 单室 | 发酵罐厌氧菌群 接种物(17.083g/L) | 葡萄糖 (4g/L) | 批实验 | 35 | 0.8 | 0.37L/gCOD | 29 | [ |
碳棒 | Φ0.5×10cm | 双室 | 厌氧污泥 | CO2 | 批实验 | 35 | 0.6~0.1 | 0.46mL/h | — | [ |
碳棒 | Φ25×80mm | 单室 | 污水处理厂 厌氧污泥(43g/L) | 活性污泥 (41g/L) | 批实验 | 37 | 0.6 | 2998.4mL | — | [ |
石墨毡 | 20cm2 | 三室 | 厌氧污泥(5.7g/L) | 碳酸氢钠 (5g/L) | 批实验 | — | 0.8 | 0.0015L/(m2·d) | 2.6 | [ |
1.1 | 7.2L/(m2·d) | 20.3 | ||||||||
1.3 | 8.8L/(m2·d) | 69.4 |
阴极材料 | 电极尺寸 | 反应器构型 | 接种培养物 | 基质 | 运行方式 /时间 | 温度/℃ | 阴极电势 (vs. Ag/AgCl)/V | 甲烷产率 | CE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|
活性炭颗粒 | 1.5g | 单室 | 厌氧污泥 (5.9g/L) | 乙酸钠 (3.2g/L) | 批实验 | 10 | 0.90 | 31mg CH4-COD/ g VSS | 60 | [ |
颗粒活性炭 | 8.45g | 双室 | 污水处理厂厌氧污(12.9g/L) | CO2 | 半连续流 | 30 | 0.58 | 65L/(m2·d) | 66 | [ |
石墨颗粒 | 27.6g | 0.9 | 62L/(m2·d) | 67 | ||||||
颗粒活性炭 | 13.87g | 双室 | 稳定MEC出水 | 乙酸钠 (1.64g/L) | 批实验 | 30 | 2.0~3.0 | 15.12m3/(m3·d) | 71.76 | [ |
碳毡 | 60cm2 | 单室 | 市政污泥池 厌氧污泥(10g/L) | 蜜糖 (44.7g/L) | 批实验 | 34 | 0.5 | 65.5mL/(L·d) | — | [ |
1 | 127.5mL/(L·d) | |||||||||
碳布 | 4×10cm | 单室 | 嗜热阳极MFC出水 | 乙酸钠 (0.8gCOD/L) | 批实验 | 55 | 0.8 | 1103mmol/ (m2·d) | — | [ |
碳纤维刷 | Φ2.5cm×12cm | 单室 | 发酵罐厌氧菌群 接种物(17.083g/L) | 葡萄糖 (4g/L) | 批实验 | 35 | 0.8 | 0.37L/gCOD | 29 | [ |
碳棒 | Φ0.5×10cm | 双室 | 厌氧污泥 | CO2 | 批实验 | 35 | 0.6~0.1 | 0.46mL/h | — | [ |
碳棒 | Φ25×80mm | 单室 | 污水处理厂 厌氧污泥(43g/L) | 活性污泥 (41g/L) | 批实验 | 37 | 0.6 | 2998.4mL | — | [ |
石墨毡 | 20cm2 | 三室 | 厌氧污泥(5.7g/L) | 碳酸氢钠 (5g/L) | 批实验 | — | 0.8 | 0.0015L/(m2·d) | 2.6 | [ |
1.1 | 7.2L/(m2·d) | 20.3 | ||||||||
1.3 | 8.8L/(m2·d) | 69.4 |
阴极材料 | 电极尺寸 | 反应器构型 | 接种培养物 | 基质 | 运行方式 | 温度/℃ | 阴极电势 (vs. Ag/AgCl)/V | 甲烷产率 | CE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|
不锈钢 | 22×7cm | 双室 | 实验室稳定运行厌氧消化系统的厌氧污泥,64.2g/L | 乙酸钠 (7.3g/L) | 批实验 | 25 | 0.4/1.0 | 1.08/1.18L/ (L·d) | — | [ |
热处理 不锈钢毡 | 20cm2 | 三室 | 厌氧污泥,5.7g/L | 碳酸氢钠 (5g/L) | 批实验 | — | -0.8 | 0.02L/(m2·d) | 2.4 | [ |
-1.1 | 1.0L/(m2·d) | 32.9 | ||||||||
-1.3 | 7.2L/(m2·d) | 60.8 | ||||||||
不锈钢毡 | -0.8 | 0.08L/(m2·d) | 10.0 | |||||||
-1.1 | 0.3L/(m2·d) | 22.9 | ||||||||
-1.3 | 5.14L/(m2·d) | 56.9 | ||||||||
不锈钢 | 135cm2 | 单室 | 消化污泥+活性污泥, 5.2 gVSS/L | 活性污泥 (7.89gCOD/L) | 批实验 | 22.5 | 1.2 | 25.6mL/d | — | [ |
不锈钢 | 10.0×7.6cm | 单室 | 活性污泥 | 乙酸钠 (10g/L) | 批实验 | 25 | 1 | 225.5mL/gCOD | — | [ |
272mL/gCOD | ||||||||||
360mL/gCOD | ||||||||||
泡沫镍 | Φ3cm×0.5mm | 单室 | 实验室稳定运行的MEC出水,14g/L | 废水活性污泥 | 批实验 | 35 | 0.8 | 145L/d | — | [ |
阴极材料 | 电极尺寸 | 反应器构型 | 接种培养物 | 基质 | 运行方式 | 温度/℃ | 阴极电势 (vs. Ag/AgCl)/V | 甲烷产率 | CE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|
不锈钢 | 22×7cm | 双室 | 实验室稳定运行厌氧消化系统的厌氧污泥,64.2g/L | 乙酸钠 (7.3g/L) | 批实验 | 25 | 0.4/1.0 | 1.08/1.18L/ (L·d) | — | [ |
热处理 不锈钢毡 | 20cm2 | 三室 | 厌氧污泥,5.7g/L | 碳酸氢钠 (5g/L) | 批实验 | — | -0.8 | 0.02L/(m2·d) | 2.4 | [ |
-1.1 | 1.0L/(m2·d) | 32.9 | ||||||||
-1.3 | 7.2L/(m2·d) | 60.8 | ||||||||
不锈钢毡 | -0.8 | 0.08L/(m2·d) | 10.0 | |||||||
-1.1 | 0.3L/(m2·d) | 22.9 | ||||||||
-1.3 | 5.14L/(m2·d) | 56.9 | ||||||||
不锈钢 | 135cm2 | 单室 | 消化污泥+活性污泥, 5.2 gVSS/L | 活性污泥 (7.89gCOD/L) | 批实验 | 22.5 | 1.2 | 25.6mL/d | — | [ |
不锈钢 | 10.0×7.6cm | 单室 | 活性污泥 | 乙酸钠 (10g/L) | 批实验 | 25 | 1 | 225.5mL/gCOD | — | [ |
272mL/gCOD | ||||||||||
360mL/gCOD | ||||||||||
泡沫镍 | Φ3cm×0.5mm | 单室 | 实验室稳定运行的MEC出水,14g/L | 废水活性污泥 | 批实验 | 35 | 0.8 | 145L/d | — | [ |
阴极材料 | 电极尺寸 | 反应器构型 | 接种培养物 | 基质 | 运行方式 | 温度/℃ | 阴极电势 (vs. Ag/AgCl)/V | 甲烷产率 | CE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|
Pt-碳毡 | 0.5mg/cm2 | 双室 | 厌氧污泥, 6.6gVss/L | 乙酸钠 | 批实验 | 35 | 0.8 | 0.91m3/m3 | 71.7 | [ |
Pt修饰碳布 | Φ40mm; 0.5mg/cm2 | 单室 | 污水处理厂曝气池出水 | 1.5g/L 乙酸钠 | 批实验 | 20~25 | 0.8 | 91.8g/(m3·d) | 102.7±4.5 | [ |
Pt-石墨块 | 2cm×2cm×0.32cm | 双室 | 市政污水处理厂二级消化厌氧消化泥 | 乙酸钠 | 批实验 | 30 | 0.6 | 250nmol/(m3·d) | 100 | [ |
Pt-碳布 | Φ3cm; 0.5mg/cm2 | 单室 | 酸化处理后的二沉池厌氧消化污泥 | — | 批实验 | 20 | 0.8 | 0.0564m3/(m3·d) | — | [ |
Pt-碳布 | 0.5mg/cm2 | 单室 | 初沉池出水 | 1g/L乙酸钠 | 批实验 | 30 | 0.8 | 93L/(m3·d) | 82 | [ |
Pt-钛网 | 4cm×5cm | 三室 | 初沉池出水 | CO2 | 批实验+ 连续流 | 22 | 1.2~1.5 | CH4含量98.1% | 32.6 | [ |
磁铁矿/ 沸石-碳布 | 2.5cm×4cm | 单室 | 厌氧二级发酵罐厌氧污泥,16.883g/L | 葡萄糖 | 批实验 | 35 | 0.8 | 238mL/(L·d) | 52.3 | [ |
阴极材料 | 电极尺寸 | 反应器构型 | 接种培养物 | 基质 | 运行方式 | 温度/℃ | 阴极电势 (vs. Ag/AgCl)/V | 甲烷产率 | CE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|
Pt-碳毡 | 0.5mg/cm2 | 双室 | 厌氧污泥, 6.6gVss/L | 乙酸钠 | 批实验 | 35 | 0.8 | 0.91m3/m3 | 71.7 | [ |
Pt修饰碳布 | Φ40mm; 0.5mg/cm2 | 单室 | 污水处理厂曝气池出水 | 1.5g/L 乙酸钠 | 批实验 | 20~25 | 0.8 | 91.8g/(m3·d) | 102.7±4.5 | [ |
Pt-石墨块 | 2cm×2cm×0.32cm | 双室 | 市政污水处理厂二级消化厌氧消化泥 | 乙酸钠 | 批实验 | 30 | 0.6 | 250nmol/(m3·d) | 100 | [ |
Pt-碳布 | Φ3cm; 0.5mg/cm2 | 单室 | 酸化处理后的二沉池厌氧消化污泥 | — | 批实验 | 20 | 0.8 | 0.0564m3/(m3·d) | — | [ |
Pt-碳布 | 0.5mg/cm2 | 单室 | 初沉池出水 | 1g/L乙酸钠 | 批实验 | 30 | 0.8 | 93L/(m3·d) | 82 | [ |
Pt-钛网 | 4cm×5cm | 三室 | 初沉池出水 | CO2 | 批实验+ 连续流 | 22 | 1.2~1.5 | CH4含量98.1% | 32.6 | [ |
磁铁矿/ 沸石-碳布 | 2.5cm×4cm | 单室 | 厌氧二级发酵罐厌氧污泥,16.883g/L | 葡萄糖 | 批实验 | 35 | 0.8 | 238mL/(L·d) | 52.3 | [ |
1 | ANGELIDAKI I, TREU L, TSAPEKOS P, et al. Biogas upgrading and utilization: current status and perspectives[J]. Biotechnology Advances, 2018, 36(2): 452-466. |
2 | 孟凡飞, 王海波, 廖昌建. 水合物法提纯沼气技术研究进展[J]. 化工进展, 2018, 37(1): 68-79. |
MENG Fanfei, WANG Haibo, LIAO Changjian. Research progress of hydrate separation technology for biogas purification[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 68-79. | |
3 | OKONKWO C N, LEE J J, DE VYLDER A, et al. Selective removal of hydrogen sulfide from simulated biogas streams using sterically hindered amine adsorbents[J]. Chemical Engineering Journal, 2020, 379: 122349. |
4 | JIANG Y Y, LING J H, XIAO P, et al. Simultaneous biogas purification and CO2 capture by vacuum swing adsorption using zeolite NaUSY[J]. Chemical Engineering Journal, 2018, 334: 2593-2602. |
5 | BASSANI I, KOUGIAS P G, TREU L, et al. Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions[J]. Environmental Science & Technology, 2015, 49(20): 12585-12593. |
6 | 周苑媛, 董楠石, 卜凡, 等. 基于外源供氢沼气生物提纯微生物及反应器开发研究进展[J]. 化工进展, 2018, 37(7): 2765-2772. |
ZHOU Yuanyuan, DONG Nanshi, BU Fan, et al. Microbial community and reactor development of microbiological biogas upgrading with external hydrogen supply: a review[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2765-2772. | |
7 | EERTEN-JANSEN M C A A VAN, HEIJNE A T, BUISMAN C J N, et al. Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives[J]. International Journal of Energy Research, 2012, 36(6): 809-819. |
8 | NELABHOTLA A, DINAMARCA C. Bioelectrochemical CO2 reduction to methane: MES integration in biogas production processes[J]. Applied Sciences, 2019, 9(6): 1056. |
9 | ZHANG Z Y, SONG Y, ZHENG S J, et al. Electro-conversion of carbon dioxide (CO2) to low-carbon methane by bioelectromethanogenesis process in microbial electrolysis cells: the current status and future perspective[J]. Bioresource Technology, 2019, 279: 339-349. |
10 | 靳捷, 刘奕梅, 邵俊捷, 等. 基于阴极材料优化的微生物电解池研究进展[J]. 化工进展, 2016, 35(2): 595-603. |
JIN Jie, LIU Yimei, SHAO Junjie, et al. Review on optimization of cathode materials in microbial electrolysis cells[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 595-603. | |
11 | 郑韶娟, 陆雪琴, 张衷译, 等. 微生物电解池: 生物电催化辅助CO2甲烷化技术[J]. 环境化学, 2019, 38(7): 1666-1674. |
ZHENG Shaojuan, LU Xueqin, ZHANG Zhongyi, et al. Microbial electrolysis cell (MEC): a new platform for CO2 bioelectromethanogenesis assisted by bioelectrocatalysis[J]. Environmental Chemistry, 2019, 38(7): 1666-1674. | |
12 | GUO K, FREGUIA S, DENNIS P G, et al. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems[J]. Environmental Science & Technology, 2013, 47(13): 7563-7570. |
13 | GUO K, SOERIYADI A H, PATIL S A, et al. Surfactant treatment of carbon felt enhances anodic microbial electrocatalysis in bioelectrochemical systems[J]. Electrochemistry Communications, 2014, 39: 1-4. |
14 | ZHANG T, NIE H R, BAIN T S, et al. Improved cathode materials for microbial electrosynthesis[J]. Energy & Environmental Science, 2013, 6(1): 217-224. |
15 | GUO K, DONOSE B C, SOERIYADI A H, et al. Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems[J]. Environmental Science & Technology, 2014, 48(12): 7151-7156. |
16 | HOU J X, LIU Z L, YANG S Q, et al. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells[J]. Journal of Power Sources, 2014, 258: 204-209. |
17 | GUO K, CHEN X, FREGUIA S, et al. Spontaneous modification of carbon surface with neutral red from its diazonium salts for bioelectrochemical systems[J]. Biosensors & Bioelectronics, 2013, 47: 184-189. |
18 | CUI M H, CUI D, LEE H S, et al. Effect of electrode position on azo dye removal in an up-flow hybrid anaerobic digestion reactor with built-in bioelectrochemical system[J]. Scientific Reports, 2016, 6: 25223. |
19 | CHENG S, XING D, CALL D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology, 2009, 43(10): 3953-3958. |
20 | LOGAN B E. Microbial fuel cells[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. |
21 | LIN C B, WU P, LIU Y D, et al. Enhanced biogas production and biodegradation of phenanthrene in wastewater sludge treated anaerobic digestion reactors fitted with a bioelectrode system[J]. Chemical Engineering Journal, 2019, 365: 1-9. |
22 | CHOI K S, KONDAVEETI S, MIN B. Bioelectrochemical methane (CH4) production in anaerobic digestion at different supplemental voltages[J]. Bioresource Technology, 2017, 245: 826-832. |
23 | LEE M, NAGENDRANATHA REDDY C, MIN B. In situ integration of microbial electrochemical systems into anaerobic digestion to improve methane fermentation at different substrate concentrations[J]. International Journal of Hydrogen Energy, 2019, 44(4): 2380-2389. |
24 | NAGENDRANATHA REDDY C, NGUYEN H T H, NOORI M T, et al. Potential applications of algae in the cathode of microbial fuel cells for enhanced electricity generation with simultaneous nutrient removal and algae biorefinery: current status and future perspectives[J]. Bioresource Technology, 2019, 292: 122010. |
25 | ZHEN G Y, LU X Q, KOBAYASHI T, et al. Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF)[J]. Chemical Engineering Journal, 2016, 284: 1146-1155. |
26 | LIU D, ROCA-PUIGROS M, GEPPERT F, et al. Granular carbon-based electrodes as cathodes in methane-producing bioelectrochemical systems[J]. Frontiers in Bioengineering and Biotechnology, 2018, 6: 78. |
27 | ZHANG D D, ZHU W B, TANG C, et al. Bioreactor performance and methanogenic population dynamics in a low-temperature (5―18℃) anaerobic fixed-bed reactor[J]. Bioresource Technology, 2012, 104: 136-143. |
28 | XU S Y, ZHANG Y C, LUO L W, et al. Startup performance of microbial electrolysis cell assisted anaerobic digester (MEC-AD) with pre-acclimated activated carbon[J]. Bioresource Technology Reports, 2019, 5: 91-98. |
29 | CHENG S A, MAO Z Z, SUN Y, et al. A novel electrochemical oxidation-methanogenesis system for simultaneously degrading antibiotics and reducing CO2 to CH4 with low energy costs[J]. Science of the Total Environment, 2021, 750: 141732. |
30 | LIU D D, ZHANG L, CHEN S, et al. Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10℃[J]. Water Research, 2016, 99: 281-287. |
31 | DE VRIEZE J, GILDEMYN S, ARENDS J B A, et al. Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion[J]. Water Research, 2014, 54: 211-221. |
32 | FU Q, KURAMOCHI Y, FUKUSHIMA N, et al. Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis[J]. Environmental Science & Technology, 2015, 49(2): 1225-1232. |
33 | VU M T, NOORI M T, MIN B. Conductive magnetite nanoparticles trigger syntrophic methane production in single chamber microbial electrochemical systems[J]. Bioresource Technology, 2020, 296: 122265. |
34 | ZHEN G Y, KOBAYASHI T, LU X Q, et al. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode[J]. Bioresource Technology, 2015, 186: 141-148. |
35 | ZHAO Z Q, ZHANG Y B, WANG L Y, et al. Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion[J]. Scientific Reports, 2015, 5: 11094. |
36 | LIU D D, ZHENG T Y, BUISMAN C, et al. Heat-treated stainless steel felt as a new cathode material in a methane-producing bioelectrochemical system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11346-11353. |
37 | KUNDU A, SAHU J N, REDZWAN G, et al. An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell[J]. International Journal of Hydrogen Energy, 2013, 38(4): 1745-1757. |
38 | BO T, ZHU X Y, ZHANG L X, et al. A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor[J]. Electrochemistry Communications, 2014, 45: 67-70. |
39 | 薄涛, 翟洪艳, 季民. 不锈钢毡电极MEC甲烷原位纯化及原理[J]. 环境科学学报, 2017, 37(11): 4057-4063. |
BO Tao, ZHAI Hongyan, JI Min. Research on in suit methane purification in MEC with stainless steel felt as electrode and theory analysis[J]. Acta Scientiae Circumstantiae, 2017, 37(11): 4057-4063. | |
40 | YANG G W, XU C L, LI H L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance[J]. Chemical Communications, 2008(48): 6537-6539. |
41 | WANG L, YANG C X, SANGEETHA T, et al. Methane production in a bioelectrochemistry integrated anaerobic reactor with layered nickel foam electrodes[J]. Bioresource Technology, 2020, 313: 123657. |
42 | GIL-CARRERA L, ESCAPA A, CARRACEDO B, et al. Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages[J]. Bioresource Technology, 2013, 146: 63-69. |
43 | ZHANG Y, GONG L L, JIANG Q Q, et al. In-situ CO2 sequestration and nutrients removal in an anaerobic digestion-microbial electrolysis cell by silicates application: effect of dosage and biogas circulation[J]. Chemical Engineering Journal, 2020, 399: 125680. |
44 | WANG L, HE Z W, GUO Z C, et al. Microbial community development on different cathode metals in a bioelectrolysis enhanced methane production system[J]. Journal of Power Sources, 2019, 444: 227306. |
45 | HU H Q, FAN Y Z, LIU H. Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts[J]. International Journal of Hydrogen Energy, 2009, 34(20): 8535-8542. |
46 | SANGEETHA T, GUO Z C, LIU W Z, et al. Cathode material as an influencing factor on beer wastewater treatment and methane production in a novel integrated upflow microbial electrolysis cell (Upflow-MEC)[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2189-2196. |
47 | CHENG T F, LI H Y, XIA W, et al. Exploration into the nickel ‘microcosmos’ in prokaryotes[J]. Coordination Chemistry Reviews, 2016, 311: 24-37. |
48 | SUO D, FANG Z, YU Y Y, et al. Synthetic curli enables efficient microbial electrocatalysis with stainless-steel electrode[J]. AIChE Journal, 2020, 66(4): e16897. |
49 | ASZTALOS J R, KIM Y. Enhanced digestion of waste activated sludge using microbial electrolysis cells at ambient temperature[J]. Water Research, 2015, 87: 503-512. |
50 | YIN Q, ZHU X Y, ZHAN G Q, et al. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina [J]. Journal of Environmental Sciences (China), 2016, 42: 210-214. |
51 | LIU W Z, CAI W W, GUO Z C, et al. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production[J]. Renewable Energy, 2016, 91: 334-339. |
52 | SIEGERT M, YATES M D, CALL D F, et al. Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis[J]. ACS Sustain Chem. Eng., 2014, 2(4): 910-917. |
53 | CAI W W, LIU W Z, YANG C X, et al. Biocathodic methanogenic community in an integrated anaerobic digestion and microbial electrolysis system for enhancement of methane production from waste sludge[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4913-4921. |
54 | CAI W W, LIU W Z, ZHANG Z J, et al. mcrA sequencing reveals the role of basophilic methanogens in a cathodic methanogenic community[J]. Water Research, 2018, 136: 192-199. |
55 | LI X, ZENG C P, LU Y B, et al. Development of methanogens within cathodic biofilm in the single-chamber microbial electrolysis cell[J]. Bioresource Technology, 2019, 274: 403-409. |
56 | GOPAL J, HASAN N, MANIKANDAN M, et al. Bacterial toxicity/compatibility of platinum nanospheres, nanocuboids and nanoflowers[J]. Scientific Reports, 2013, 3: 1260. |
57 | RIZZELLO L, CINGOLANI R, POMPA P P. Nanotechnology tools for antibacterial materials[J]. Nanomedicine, 2013, 8(5): 807-821. |
58 | CHOI M J, YANG E, YU H W, et al. Transition metal/carbon nanoparticle composite catalysts as platinum substitutes for bioelectrochemical hydrogen production using microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2019, 44(4): 2258-2265. |
59 | JEREMIASSE A W, HAMELERS H V M, SAAKES M, et al. Ni foam cathode enables high volumetric H2 production in a microbial electrolysis cell[J]. International Journal of Hydrogen Energy, 2010, 35(23): 12716-12723. |
60 | SELEMBO P A, MERRILL M D, LOGAN B E. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2010, 35(2): 428-437. |
61 | KIM K R, KANG J, CHAE K J. Improvement in methanogenesis by incorporating transition metal nanoparticles and granular activated carbon composites in microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2017, 42(45): 27623-27629. |
62 | KIM K Y, HABAS S E, SCHAIDLE J A, et al. Application of phase-pure nickel phosphide nanoparticles as cathode catalysts for hydrogen production in microbial electrolysis cells[J]. Bioresource Technology, 2019, 293: 122067. |
63 | JAYABALAN T, MATHESWARAN M, RADHAKRISHNAN T K, et al. Influence of nickel molybdate nanocatalyst for enhancing biohydrogen production in microbial electrolysis cell utilizing sugar industrial effluent[J]. Bioresource Technology, 2021, 320: 124284. |
64 | JAYABALAN T, MATHESWARAN M, PREETHI V, et al. Enhancing biohydrogen production from sugar industry wastewater using metal oxide/graphene nanocomposite catalysts in microbial electrolysis cell[J]. International Journal of Hydrogen Energy, 2020, 45(13): 7647-7655. |
65 | GAO T, ZHANG H M, XU X T, et al. Integrating microbial electrolysis cell based on electrochemical carbon dioxide reduction into anaerobic osmosis membrane reactor for biogas upgrading[J]. Water Research, 2021, 190: 116679. |
66 | YANG Z M, GUO R B, SHI X S, et al. Magnetite nanoparticles enable a rapid conversion of volatile fatty acids to methane[J]. RSC Advances, 2016, 6(31): 25662-25668. |
67 | LIU P P, LIANG P, JIANG Y, et al. Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell[J]. Applied Energy, 2018, 216: 382-388. |
68 | LIU F H, ROTARU A E, SHRESTHA P M, et al. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange[J]. Environmental Microbiology, 2015, 17(3): 648-655. |
69 | VU M T, NOORI M T, MIN B. Magnetite/zeolite nanocomposite-modified cathode for enhancing methane generation in microbial electrochemical systems[J]. Chemical Engineering Journal, 2020, 393: 124613. |
70 | SUN R, ZHOU A J, JIA J N, et al. Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells[J]. Bioresource Technology, 2015, 175: 68-74. |
71 | PARK J, LEE B, TIAN D, et al. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell[J]. Bioresource Technology, 2018, 247: 226-233. |
72 | WANG Y, ZHONG K Q, LI H, et al. Bimetallic hybrids modified with carbon nanotubes as cathode catalysts for microbial fuel cell: effective oxygen reduction catalysis and inhibition of biofilm formation[J]. Journal of Power Sources, 2021, 485: 229273. |
73 | YI G P, CUI D, YANG L M, et al. Bacteria-affinity aminated carbon nanotubes bridging reduced graphene oxide for highly efficient microbial electrocatalysis[J]. Environmental Research, 2020, 191: 110212. |
74 | GÖDDE J, MERKO M, XIA W, et al. Nickel nanoparticles supported on nitrogen-doped carbon nanotubes are a highly active, selective and stable CO2 methanation catalyst[J]. Journal of Energy Chemistry, 2021, 54: 323-331. |
75 | 胡凯, 贾硕秋, 陈卫. 微生物电解池构型和电极材料研究综述[J]. 能源环境保护, 2016, 30(5): 1-8, 34. |
HU Kai, JIA Shuoqiu, CHEN Wei. Review on configurations and electrode materials of microbial electrolysis cell[J]. Energy Environmental Protection, 2016, 30(5): 1-8, 34. | |
76 | BEEGLE J R, BOROLE A P. Energy production from waste: evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors[J]. Renewable and Sustainable Energy Reviews, 2018, 96: 343-351. |
77 | PARK J G, LEE B, SHI P, et al. Effects of electrode distance and mixing velocity on current density and methane production in an anaerobic digester equipped with a microbial methanogenesis cell[J]. International Journal of Hydrogen Energy, 2017, 42(45): 27732-27740. |
78 | HOU Y P, ZHANG R D, LUO H P, et al. Microbial electrolysis cell with spiral wound electrode for wastewater treatment and methane production[J]. Process Biochemistry, 2015, 50(7): 1103-1109. |
79 | PARK J G, JIANG D Q, LEE B, et al. Towards the practical application of bioelectrochemical anaerobic digestion (BEAD): insights into electrode materials, reactor configurations, and process designs[J]. Water Research, 2020, 184: 116214. |
80 | RADER G K, LOGAN B E. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate[J]. International Journal of Hydrogen Energy, 2010, 35(17): 8848-8854. |
81 | 毛政中, 孙怡, 黄志鹏, 等. 微生物电解池产甲烷技术研究进展[J]. 化工学报, 2019, 70(7): 2411-2425. |
MAO Zhengzhong, SUN Yi, HUANG Zhipeng, et al. Progress of research on methanogenic microbial electrolysis cell[J]. CIESC Journal, 2019, 70(7): 2411-2425. | |
82 | ENZMANN F, HOLTMANN D. Rational scale-up of a methane producing bioelectrochemical reactor to 50L pilot scale[J]. Chemical Engineering Science, 2019, 207: 1148-1158. |
83 | YUAN Y, CHENG H Y, CHEN F, et al. Enhanced methane production by alleviating sulfide inhibition with a microbial electrolysis coupled anaerobic digestion reactor[J]. Environment International, 2020, 136: 105503. |
84 | JIN X, ZHANG Y, LI X, et al. Microbial electrolytic capture, separation and regeneration of CO2 for biogas upgrading[J]. Environmental Science & Technology, 2017, 51(16): 9371-9378. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[4] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[5] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[6] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[7] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[8] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[9] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[10] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[11] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[12] | LYU Chao, ZHANG Xiwen, JIN Lijian, YANG Linjun. Efficient capture of CO2 by a new biphasic solvent-ionic liquid system [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3226-3232. |
[13] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[14] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[15] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |