Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2476-2486.DOI: 10.16085/j.issn.1000-6613.2021-1161

• Materials science and technology • Previous Articles     Next Articles

Review on cathode materials for CO2 methanation assisted by microbial electrolytic cell

ZHENG Xiaomei1,2(), LIN Rujing1,2, ZHOU Wenjing1,2, XU Ling1,2, ZHANG Hongning1,2, ZHANG Xinying1,2, XIE Li1,2()   

  1. 1.Key Laboratory of Yangtze Water Environment of the Ministry of Education, Tongji University, Shanghai 200092, China
    2.College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
  • Received:2021-06-01 Revised:2021-08-22 Online:2022-05-24 Published:2022-05-05
  • Contact: XIE Li

微生物电解池辅助CO2甲烷化阴极材料的研究进展

郑小梅1,2(), 林茹晶1,2, 周文静1,2, 徐泠1,2, 张洪宁1,2, 张昕颖1,2, 谢丽1,2()   

  1. 1.同济大学长江水环境教育部重点实验室,上海 200092
    2.同济大学环境科学与工程学院,上海 200092
  • 通讯作者: 谢丽
  • 作者简介:郑小梅(1993—),女,博士研究生。E-mail:1911419@tongji.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(51978487)

Abstract:

Integrating microbial electrolysis cell (MEC) into anaerobic digestion for enhancing methane production (MEC-AD) is a new technology that has the potential to alleviate the energy crisis and greenhouse effect. With small input of electrical energy, it uses microorganisms as catalyst to decompose organic matter into electrons and protons at the anode while producing hydrogen and methane at the cathode. In recent years, MEC has made significant progress in reactor configuration, cathode material, electron transmission method and the composition of microbial community structure. Among them, high-efficiency and low-cost cathode catalysts, which attracts researchers' attention, is crucial in transforming the idea of MEC into practice. This article reviewed the working principle of MEC-AD in biomethanation and the development status of cathode catalyst including carbon-based cathodes, metal-based cathodes and composite cathodes. The methane yield, electrochemical characteristics, biocompatibility, electron transmission method and microbial community structure of different cathode systems were systematically introduced, compared and discussed according to their advantages and disadvantages. Potential future research directions were pointed out to provide the basis for the engineering application of the MEC-AD technology.

Key words: microbial electrolysis cell (MEC), anaerobic digestion, cathode materials, carbon dioxide, methane

摘要:

微生物电解池(microbial electrolysis cell,MEC)产甲烷技术是一种有望成为缓解能源危机与温室效应的重要新型途径。它以外界输入的较小电能为能量来源,以微生物为催化剂,在阳极通过分解有机物形成电子和质子;在阴极产生氢气和甲烷。近年来,MEC在反应器构型、阴极材料设计及电子转移途径、微生物群落结构组成等方面的研究取得了重要进展,寻找高效低价的阴极材料催化剂,实现MEC从概念到应用成为相关领域的研究热点。本文综述了MEC耦合厌氧消化系统产甲烷的工作原理和常见阴极材料的发展现状;分别对碳基阴极、金属基阴极及复合阴极的甲烷产率进行了阐述;系统介绍了不同阴极系统的电子传递方式、电化学特性、生物相容性、微生物群落结构组成等属性;讨论了各类电极的优缺点,并指出了今后的重点研究方向,以期为MEC耦合厌氧消化产甲烷技术的工程应用提供基础。

关键词: 微生物电解池, 厌氧消化, 阴极材料, 二氧化碳, 甲烷

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd