Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (4): 1925-1940.DOI: 10.16085/j.issn.1000-6613.2021-0908
• Materials science and technology • Previous Articles Next Articles
TANG Zilong1,2(), HAO Yuanqiang1(), LIU Younian2()
Received:
2021-04-27
Revised:
2021-06-12
Online:
2022-04-25
Published:
2022-04-23
Contact:
HAO Yuanqiang,LIU Younian
通讯作者:
郝远强,刘又年
作者简介:
唐子龙(1967—),男,博士,教授,研究方向为药物分子的设计与合成。E-mail:基金资助:
CLC Number:
TANG Zilong, HAO Yuanqiang, LIU Younian. Recent progress of electrochemical sensors based on layered black phosphorus[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1925-1940.
唐子龙, 郝远强, 刘又年. 基于薄层黑磷的电化学传感器研究进展[J]. 化工进展, 2022, 41(4): 1925-1940.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0908
1 | RAO C N R, SOOD A K, SUBRAHMANYAM K S, et al. Graphene: the new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48(42): 7752-7777. |
2 | TAN C L, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. |
3 | FIORI G, BONACCORSO F, IANNACCONE G, et al. Electronics based on two-dimensional materials[J]. Nature Nanotechnology, 2014, 9(10): 768-779. |
4 | BONACCORSO F, COLOMBO L, YU G H, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501. |
5 | 翟倩楠, 冯树波. 氧化石墨烯的制备、结构控制与应用[J]. 化工进展, 2020, 39(10): 4061-4072. |
ZHAI Qiannan, FENG Shubo. Preparation, structure control and application of graphene oxide[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4061-4072. | |
6 | BRIDGMAN P W. Two new modifications of phosphorus[J]. Journal of the American Chemical Society, 1914, 36(7): 1344-1363. |
7 | LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. |
8 | LING X, WANG H, HUANG S X, et al. The renaissance of black phosphorus[J]. Proceedings of the National Academy of Sciences, 2015, 112(15): 4523-4530. |
9 | BUSCEMA M, GROENENDIJK D J, BLANTER S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Letters, 2014, 14(6): 3347-3352. |
10 | XIA F N, WANG H, JIA Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nature Communications, 2014, 5: 4458. |
11 | LONG M S, WANG P, FANG H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 2019, 29: 1803807. |
12 | LIU Y J, BHATTARAI P, DAI Z F, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chemical Society Reviews, 2019, 48(7): 2053-2108. |
13 | YUAN H T, LIU X G, AFSHINMANESH F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction[J]. Nature Nanotechnology, 2015, 10(8): 707-713. |
14 | KIM J, BAIK S S, RYU S H, et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus[J]. Science, 2015, 349(6249): 723-726. |
15 | CHEN W S, OUYANG J, LIU H, et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer[J]. Advanced Materials, 2017, 29(5): 1603864. |
16 | CHEN W S, OUYANG J, YI X Y, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy[J]. Advanced Materials, 2018, 30(3): 1703458. |
17 | OUYANG J, DENG Y Y, CHEN W S, et al. Marriage of artificial catalase and black phosphorus nanosheets for reinforced photodynamic antitumor therapy[J]. Journal of Materials Chemistry B, 2018, 6(14): 2057-2064. |
18 | OUYANG J, LIU R Y, CHEN W S, et al. A black phosphorus based synergistic antibacterial platform against drug resistant bacteria[J]. Journal of Materials Chemistry B, 2018, 6(39): 6302-6310. |
19 | 梁一尊, 葛艳清, 王驰, 等. 低维黑磷的制备及其在光催化降解领域的应用研究进展[J]. 化工进展, 2021, 40(2): 845-858. |
LIANG Yizun, GE Yanqing, WANG Chi, et al. Research progress on preparation of low-dimensional black phosphorus and its applications in photodegradation field[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 845-858. | |
20 | 黄申洋, 张国伟, 汪凡洁, 等. 二维黑磷的光学性质[J]. 物理学报, 2021, 70(2): 168-179. |
HUANG Shenyang, ZHANG Guowei, WANG Fanjie, et al. Optical properties of two-dimensional black phosphorus[J]. Acta Physica Sinica, 2021, 70(2): 168-179. | |
21 | TIAN B, TIAN B, SMITH B, et al. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K[J]. Nature Communications, 2018, 9(1): 1397. |
22 | CAI Z, LIU B, ZOU X, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures[J]. Chemical Reviews, 2018, 118(13): 6091-6133. |
23 | 刘艳奇, 何路东, 廉培超, 等. 黑磷烯稳定性增强研究进展[J]. 化工学报, 2020, 71(3): 936-944. |
LIU Yanqi, HE Ludong, LIAN Peichao, et al. Progress on stability enhancement of black phosphorene[J]. CIESC Journal, 2020, 71(3): 936-944. | |
24 | XIA F N, WANG H, HWANG J C M, et al. Black phosphorus and its isoelectronic materials[J]. Nature Reviews Physics, 2019, 1(5): 306-317. |
25 | YIN T, LONG L, TANG X, et al. Advancing applications of black phosphorus and BP-analog materials in photo/electrocatalysis through structure engineering and surface modulation[J]. Advanced Science, 2020, 7(19): 2001431. |
26 | GUSMÃO R, SOFER Z, PUMERA M. Black phosphorus rediscovered: from bulk material to monolayers[J]. Angewandte Chemie International Edition, 2017, 56(28): 8052-8072. |
27 | BATMUNKH M, SHRESTHA A, BAT-ERDENE M, et al. Electrocatalytic activity of a 2D phosphorene-based heteroelectrocatalyst for photoelectrochemical cells[J]. Angewandte Chemie International Edition, 2018, 57(10): 2644-2647. |
28 | GE X X, XIA Z H, GUO S J. Recent advances on black phosphorus for biomedicine and biosensing[J]. Advanced Functional Materials, 2019, 29(29): 1900318. |
29 | GUI R, JIN H, WANG Z, et al. Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications[J]. Chemical Society Reviews, 2018, 47(17): 6795-6823. |
30 | 朱晋潇, 刘晓东, 薛敏钊, 等. 磷烯的制备、结构、性质及器件应用[J]. 物理化学学报, 2017, 33(11): 2153-2172. |
ZHU Jinxiao, LIU Xiaodong, XUE Minzhao, et al. Phosphorene: synthesis, structure, properties and device applications[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2153-2172. | |
31 | LIU H J, SONG H J, SU Y Y, et al. Recent advances in black phosphorus-based optical sensors[J]. Applied Spectroscopy Reviews, 2019, 54(3): 275-284. |
32 | ZHOU Y, ZHANG M X, GUO Z N, et al. Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices[J]. Materials Horizons, 2017, 4(6): 997-1019. |
33 | PUMERA M. Phosphorene and black phosphorus for sensing and biosensing[J]. TrAC Trends in Analytical Chemistry, 2017, 93: 1-6. |
34 | LEE E, YOON Y S, KIM D J. Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing[J]. ACS Sensors, 2018, 3(10): 2045-2060. |
35 | YANG S X, JIANG C B, WEI S H. Gas sensing in 2D materials[J]. Applied Physics Reviews, 2017, 4(2): 021304. |
36 | MENG Z, STOLZ R M, MENDECKI L, et al. Electrically-transduced chemical sensors based on two dimensional nanomaterials[J]. Chemical Reviews, 2019, 119(1): 478-598. |
37 | 杨志, 李泊龙, 韩雨彤, 等. 二维过渡金属硫族化合物纳米异质结气体传感器研究进展[J]. 科学通报, 2019, 64(35): 3699-3716. |
YANG Z, LI B L, HAN Y T, et al. Gas sensors based on two-dimensional transition metal dichalcogenide nanoheterojunctions[J]. Chinese Science Bulletin, 2019, 64: 3699-3716. | |
38 | YUAN S Y, ZHANG S L. Recent progress on gas sensors based on graphene-like 2D/2D nanocomposites[J]. Journal of Semiconductors, 2019, 40(11): 111608. |
39 | LIU X H, MA T T, PINNA N, et al. Two-dimensional nanostructured materials for gas sensing[J]. Advanced Functional Materials, 2017, 27(37): 1702168. |
40 | ROY P K, LUXA J, SOFER Z. Emerging pnictogen-based 2D semiconductors: sensing and electronic devices[J]. Nanoscale, 2020, 12(19): 10430-10446. |
41 | KOU L, FRAUENHEIM T, CHEN C. Phosphorene as a superior gas sensor: selective adsorption and distinct I–V response[J]. The Journal of Physical Chemistry Letters, 2014, 5(15): 2675-2681. |
42 | LIU Y, WANG Y, IKRAM M, et al. Facile synthesis of highly dispersed Co3O4 nanoparticles on expanded, thin black phosphorus for a ppb-Level NO x gas sensor[J]. ACS Sensors, 2018, 3(8): 1576-1583. |
43 | JIANG X H, QIN S C, CAO Y, et al. Stable one-dimensional single crystalline black phosphorus nanowires for gas sensing[J]. ACS Applied Nano Materials, 2020, 3(4): 3402-3409. |
44 | ZHUGE Z, TANG Y H, TAO J W, et al. Functionalized black phosphorus nanocomposite for biosensing[J]. ChemElectroChem, 2019, 6(4): 1129-1133. |
45 | MAYORGA-MARTINEZ C C, SOFER Z, PUMERA M. Layered black phosphorus as a selective vapor sensor[J]. Angewandte Chemie International Edition, 2015, 54(48): 14317-14320. |
46 | YASAEI P, BEHRANGINIA A, FOROOZAN T, et al. Stable and selective humidity sensing using stacked black phosphorus flakes[J]. ACS Nano, 2015, 9(10): 9898-9905. |
47 | YAN S C, WANG B J, WANG Z L, et al. Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing[J]. Biosensors and Bioelectronics, 2016, 80: 34-38. |
48 | DING H C, ZHANG L, TANG Z R, et al. Black phosphorus quantum dots doped ZnO nanoparticles as efficient electrode materials for sensitive hydrogen peroxide detection[J]. Journal of Electroanalytical Chemistry, 2018, 824: 161-168. |
49 | ZHAO Y, ZHANG Y H, ZHUGE Z, et al. Synthesis of a poly-L-lysine/black phosphorus hybrid for biosensors[J]. Analytical Chemistry, 2018, 90(5): 3149-3155. |
50 | ZHAO Y, ZHUGE Z, TANG Y H, et al. Synthesis of a CuNP/chitosan/black phosphorus nanocomposite for non-enzymatic hydrogen peroxide sensing[J]. Analyst, 2020, 145(22): 7260-7266. |
51 | MAYORGA-MARTINEZ C C, SOFER Z, PUMERA M. Binary phosphorene redox behavior in oxidoreductase enzymatic systems[J]. ACS Nano, 2019, 13(11): 13217-13224. |
52 | ZHANG Z X, LI Y Y, XU J K, et al. Electropolymerized molecularly imprinted polypyrrole decorated with black phosphorene quantum dots onto poly(3,4-ethylenedioxythiophene) nanorods and its voltammetric sensing of vitamin C[J]. Journal of Electroanalytical Chemistry, 2018, 814: 153-160. |
53 | TIAN K J, HU L, DONG Y P, et al. Application of black phosphorus nanosheets modified electrode for electrochemical determination of ascorbic acid[J]. Russian Journal of Electrochemistry, 2019, 55(12): 1221-1228. |
54 | DURAI L, GOPALAKRISHNAN A, VISHNU N, et al. Polyaniline sheathed black phosphorous: a novel, advanced platform for electrochemical sensing applications[J]. Electroanalysis, 2020, 32(2): 238-247. |
55 | ZOU J, YU J-G. Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers[J]. Materials Science and Engineering C, 2020, 112: 110910. |
56 | ZOU J, LAN X W, ZHAO G Q, et al. Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers[J]. Microchimica Acta, 2020, 187(11): 1-11. |
57 | SARSWAT P K, FREE M L. Real-time detection of thiols using CoPc modified black-phosphorus based sensors[J]. Journal of the Electrochemical Society, 2019, 166(2): B1-B8. |
58 | GE Y, CAMARADA M B, XU L J, et al. A highly stable black phosphorene nanocomposite for voltammetric detection of clenbuterol[J]. Microchimica Acta, 2018, 185(12): 1-10. |
59 | XIANG Y, CAMARADA M B, WEN Y P, et al. Simple voltammetric analyses of ochratoxin A in food samples using highly-stable and anti-fouling black phosphorene nanosensor[J]. Electrochimica Acta, 2018, 282: 490-498. |
60 | XU J Q, QIAO X J, WANG Y, et al. Electrostatic assembly of gold nanoparticles on black phosphorus nanosheets for electrochemical aptasensing of patulin[J]. Microchimica Acta, 2019, 186(4): 1-8. |
61 | CAI J Y, SUN B L, LI W Y, et al. Novel nanomaterial of porous graphene functionalized black phosphorus as electrochemical sensor platform for bisphenol A detection[J]. Journal of Electroanalytical Chemistry, 2019, 835: 1-9. |
62 | WU L, MENG Q, XU Z, et al. Passivation of black phosphorus as organic-phase enzyme platform for bisphenol A determination[J]. Analytica Chimica Acta, 2020, 1095: 197-203. |
63 | LIANG S, WU L D, LIU H, et al. Organic molecular passivation of phosphorene: an aptamer-based biosensing platform[J]. Biosensors and Bioelectronics, 2019, 126: 30-35. |
64 | KUMAR V, BRENT J R, SHORIE M, et al. Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 22860-22868. |
65 | TUTEJA S K, NEETHIRAJAN S. Exploration of two-dimensional bio-functionalized phosphorene nanosheets (black phosphorous) for label free haptoglobin electro-immunosensing applications[J]. Nanotechnology, 2018, 29(13): 135101. |
66 | MAYORGA-MARTINEZ C C, MOHAMAD LATIFF N, ENG A Y S, et al. Black phosphorus nanoparticle labels for immunoassays via hydrogen evolution reaction mediation[J]. Analytical Chemistry, 2016, 88(20): 10074-10079. |
67 | CHEN Y T, REN R, PU H H, et al. Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets[J]. Biosensors and Bioelectronics, 2017, 89: 505-510. |
68 | CAI J Y, GOU X D, SUN B L, et al. Porous graphene-black phosphorus nanocomposite modified electrode for detection of leptin[J]. Biosensors and Bioelectronics, 2019, 137: 88-95. |
69 | JAKÓBCZYK P, KOWALSKI M, BRODOWSKI M, et al. Low-power microwave-induced fabrication of functionalised few-layer black phosphorus electrodes: a novel route towards Haemophilus Influenzae pathogen biosensing devices[J]. Applied Surface Science, 2021, 539: 148286. |
70 | SHI H H, GE S G, WANG Y H, et al. Wide-spectrum-responsive paper-supported photoelectrochemical sensing platform based on black phosphorus-sensitized TiO2 [J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41062-41068. |
71 | SUN Y J, JIN H, JIANG X W, et al. Black phosphorus nanosheets adhering to thionine-doped 2D MOF as a smart aptasensor enabling accurate capture and ratiometric electrochemical detection of target microRNA[J]. Sensors and Actuators B: Chemical, 2020, 309: 127777. |
72 | GAO C M, YU H H, WANG Y H, et al. Paper-based constant potential electrochemiluminescence sensing platform with black phosphorus as a luminophore enabled by a perovskite solar cell[J]. Analytical Chemistry, 2020, 92(10): 6822-6826. |
73 | DING H C, TANG Z R, DONG Y P. Synthesis of black phosphorus quantum dots doped ZnO nanoparticles and its electrogenerated chemiluminescent sensing application[J]. ECS Journal of Solid State Science and Technology, 2018, 7(9): R135-R141. |
74 | LIU S P, LUO J J, JIANG X X, et al. Gold nanoparticle-modified black phosphorus nanosheets with improved stability for detection of circulating tumor cells[J]. Microchimica Acta, 2020, 187(7): 1-9. |
75 | XU H B, ZHENG J, LIANG H, et al. Electrochemical sensor for cancer cell detection using calix[8]arene/polydopamine/phosphorene nanocomposite based on host-guest recognition[J]. Sensors and Actuators B: Chemical, 2020, 317: 128193. |
76 | FANG D D, ZHAO D D, ZHANG S P, et al. Black phosphorus quantum dots functionalized MXenes as the enhanced dual-mode probe for exosomes sensing[J]. Sensors and Actuators B: Chemical, 2020, 305: 127544. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[5] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[6] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[7] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[8] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[9] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[10] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[11] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[12] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[13] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[14] | QIN Kai, YANG Shilin, LI Jun, CHU Zhenyu, BO Cuimei. A Kalman filter algorithm-based high precision detection method for glucoamylase biosensors [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3177-3186. |
[15] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |