Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (4): 1916-1924.DOI: 10.16085/j.issn.1000-6613.2021-0938
• Industrial catalysis • Previous Articles Next Articles
HAN Jingjing(), TAN Juan(
), LIU Jing, LIU Yu
Received:
2021-05-05
Revised:
2021-07-05
Online:
2022-04-25
Published:
2022-04-23
Contact:
TAN Juan
通讯作者:
谭涓
作者简介:
韩京京(1997—),女,硕士研究生,研究方向为分子筛合成及可再生能源催化转化。E-mail:CLC Number:
HAN Jingjing, TAN Juan, LIU Jing, LIU Yu. Controllable synthesis of small size ZSM-22 zeolites and their performance in the production of bio-jet fuel by hydrocracking and hydroisomerization of long-chain normal bio-paraffins[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1916-1924.
韩京京, 谭涓, 刘靖, 刘宇. 小晶粒ZSM-22的可控合成及其催化长链正构生物烷烃制航空煤油性能[J]. 化工进展, 2022, 41(4): 1916-1924.
样品 | 晶种量/μg·g-1 | 陈化条件 | n(K2O/SiO2) | 添加剂 | 晶相组成 | 相对结晶度/% |
---|---|---|---|---|---|---|
A-1 | 0 | — | 0.13 | — | ZSM-22+少量ZSM-5 | 76 |
A-2 | 0 | 50℃,6h | 0.13 | — | ZSM-22 | 100 |
A-3 | 1000 | — | 0.13 | — | ZSM-22 | 89 |
A-4 | 1000 | 50℃,6h | 0.13 | — | ZSM-22 | 92 |
A-5 | 0 | 50℃,6h | 0.16 | — | ZSM-22 | 106 |
A-6 | 1000 | 50℃,6h | 0.13 | 四乙基氢氧化铵 | ZSM-22 | 94 |
A-7 | 1000 | 50℃,6h | 0.13 | 尿素 | ZSM-22 | 76 |
样品 | 晶种量/μg·g-1 | 陈化条件 | n(K2O/SiO2) | 添加剂 | 晶相组成 | 相对结晶度/% |
---|---|---|---|---|---|---|
A-1 | 0 | — | 0.13 | — | ZSM-22+少量ZSM-5 | 76 |
A-2 | 0 | 50℃,6h | 0.13 | — | ZSM-22 | 100 |
A-3 | 1000 | — | 0.13 | — | ZSM-22 | 89 |
A-4 | 1000 | 50℃,6h | 0.13 | — | ZSM-22 | 92 |
A-5 | 0 | 50℃,6h | 0.16 | — | ZSM-22 | 106 |
A-6 | 1000 | 50℃,6h | 0.13 | 四乙基氢氧化铵 | ZSM-22 | 94 |
A-7 | 1000 | 50℃,6h | 0.13 | 尿素 | ZSM-22 | 76 |
样品 | 聚集体长度 /μm | 晶粒c轴长度 /nm | 晶粒直径 /nm | 晶粒长径比 |
---|---|---|---|---|
A-1 | — | 2600 | 170 | 15.3 |
A-2 | 1.1 | 170 | 60 | 2.8 |
A-3 | 0.9 | 230 | 50 | 4.6 |
A-4 | 1.1 | 330 | 50 | 6.6 |
A-5 | 0.9 | 140 | 50 | 2.8 |
A-6 | 0.6 | 108 | 40 | 2.7 |
A-7 | 0.3 | 190 | 50 | 3.8 |
样品 | 聚集体长度 /μm | 晶粒c轴长度 /nm | 晶粒直径 /nm | 晶粒长径比 |
---|---|---|---|---|
A-1 | — | 2600 | 170 | 15.3 |
A-2 | 1.1 | 170 | 60 | 2.8 |
A-3 | 0.9 | 230 | 50 | 4.6 |
A-4 | 1.1 | 330 | 50 | 6.6 |
A-5 | 0.9 | 140 | 50 | 2.8 |
A-6 | 0.6 | 108 | 40 | 2.7 |
A-7 | 0.3 | 190 | 50 | 3.8 |
样品 | 比表面积 /m2·g-1 | 外比表面积 /m2·g-1 | 微孔比表面积 /m2·g-1 | 孔容 /cm3·g-1 | 微孔孔容 /cm3·g-1 |
---|---|---|---|---|---|
A-1 | 222 | 39 | 183 | 0.25 | 0.07 |
A-2 | 273 | 48 | 225 | 0.35 | 0.09 |
A-3 | 259 | 44 | 215 | 0.39 | 0.08 |
A-4 | 279 | 33 | 246 | 0.44 | 0.09 |
A-5 | 260 | 40 | 220 | 0.26 | 0.09 |
A-6 | 249 | 55 | 194 | 0.55 | 0.08 |
A-7 | 223 | 84 | 139 | 0.48 | 0.06 |
样品 | 比表面积 /m2·g-1 | 外比表面积 /m2·g-1 | 微孔比表面积 /m2·g-1 | 孔容 /cm3·g-1 | 微孔孔容 /cm3·g-1 |
---|---|---|---|---|---|
A-1 | 222 | 39 | 183 | 0.25 | 0.07 |
A-2 | 273 | 48 | 225 | 0.35 | 0.09 |
A-3 | 259 | 44 | 215 | 0.39 | 0.08 |
A-4 | 279 | 33 | 246 | 0.44 | 0.09 |
A-5 | 260 | 40 | 220 | 0.26 | 0.09 |
A-6 | 249 | 55 | 194 | 0.55 | 0.08 |
A-7 | 223 | 84 | 139 | 0.48 | 0.06 |
催化剂 | 总酸量/μmol·g-1 | 强酸量/μmol·g-1 | |||||
---|---|---|---|---|---|---|---|
B酸 | L酸 | B+L | B酸 | L酸 | B+L | ||
A-1 | 265 | 28 | 293 | 252 | 3 | 255 | |
A-3 | 243 | 21 | 264 | 225 | 3 | 228 | |
A-5 | 315 | 33 | 348 | 276 | 5 | 281 | |
A-6 | 265 | 41 | 306 | 227 | 14 | 241 |
催化剂 | 总酸量/μmol·g-1 | 强酸量/μmol·g-1 | |||||
---|---|---|---|---|---|---|---|
B酸 | L酸 | B+L | B酸 | L酸 | B+L | ||
A-1 | 265 | 28 | 293 | 252 | 3 | 255 | |
A-3 | 243 | 21 | 264 | 225 | 3 | 228 | |
A-5 | 315 | 33 | 348 | 276 | 5 | 281 | |
A-6 | 265 | 41 | 306 | 227 | 14 | 241 |
催化剂 | 转化率/% | 裂解选择性/% | C9~C16收率/% | 生物航煤收率/% |
---|---|---|---|---|
A-1 | 69.44 | 93.84 | 23.11 | 26.10 |
A-2 | 71.71 | 95.53 | 22.36 | 24.12 |
A-3 | 59.88 | 92.81 | 21.90 | 24.72 |
A-4 | 53.96 | 93.26 | 23.09 | 25.48 |
A-5 | 86.37 | 95.63 | 25.43 | 27.31 |
A-6 | 80.47 | 92.08 | 28.26 | 33.00 |
A-7 | 31.92 | 96.20 | 21.09 | 21.62 |
催化剂 | 转化率/% | 裂解选择性/% | C9~C16收率/% | 生物航煤收率/% |
---|---|---|---|---|
A-1 | 69.44 | 93.84 | 23.11 | 26.10 |
A-2 | 71.71 | 95.53 | 22.36 | 24.12 |
A-3 | 59.88 | 92.81 | 21.90 | 24.72 |
A-4 | 53.96 | 93.26 | 23.09 | 25.48 |
A-5 | 86.37 | 95.63 | 25.43 | 27.31 |
A-6 | 80.47 | 92.08 | 28.26 | 33.00 |
A-7 | 31.92 | 96.20 | 21.09 | 21.62 |
催化剂 | Pt质量分数① /% | 氢气吸附量 /cm3·g-1 | Pt粒子直径② /nm | Pt分散度② /% |
---|---|---|---|---|
Pt/A-1 | 0.261 | 0.048 | 3.55 | 31.9 |
Pt/A-3 | 0.266 | 0.041 | 4.20 | 27.0 |
Pt/A-5 | 0.282 | 0.073 | 2.52 | 45.0 |
Pt/A-6 | 0.255 | 0.082 | 2.02 | 56.1 |
催化剂 | Pt质量分数① /% | 氢气吸附量 /cm3·g-1 | Pt粒子直径② /nm | Pt分散度② /% |
---|---|---|---|---|
Pt/A-1 | 0.261 | 0.048 | 3.55 | 31.9 |
Pt/A-3 | 0.266 | 0.041 | 4.20 | 27.0 |
Pt/A-5 | 0.282 | 0.073 | 2.52 | 45.0 |
Pt/A-6 | 0.255 | 0.082 | 2.02 | 56.1 |
1 | Total fuel consumption of commercial airlines worldwide between 2005 and 2021[EB/OL]. [2021-06-03]. . |
2 | LI C, ZHAO X, WANG A, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. |
3 | HASSAN M, PFAENDER H, MAVRIS D N. Feasibility analysis of aviation CO2 emission goals under uncertainty[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. 5-9 June 2017, Denver, Colorado. Reston, Virginia: AIAA, 2017. |
4 | WANG M, DEWIL R, MANIATIS K, et al. Biomass-derived aviation fuels: challenges and perspective[J]. Progress in Energy and Combustion Science, 2019, 74: 31-49. |
5 | JU C, ZHOU Y P, HE M L, et al. Improvement of selectivity from lipid to jet fuel by rational integration of feedstock properties and catalytic strategy[J]. Renewable Energy, 2016, 97: 1-7. |
6 | ZSCHIESCHE C, HIMSL D, RAKOCZY R, et al. Hydroisomerization of long-chain n-alkanes over bifunctional zeolites with 10-membered- and 12-membered-ring pores[J]. Chemical Engineering & Technology, 2018, 41(1): 199-204. |
7 | ZHANG M, CHEN Y J, WANG L, et al. Shape selectivity in hydroisomerization of hexadecane over Pt supported on 10-ring zeolites: ZSM-22, ZSM-23, ZSM-35, and ZSM-48[J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6069-6078. |
8 | 刘宇, 谭涓, 刘靖, 等. Pt/ZSM-35催化长链正构生物烷烃加氢裂化/异构化制航空煤油[J]. 化工进展, 2020, 39(12): 5086-5094. |
LIU Yu, TAN Juan, LIU Jing, et al. Production of bio-jet fuel by hydrocracking and hydroisomerization of long-chain normal bio-paraffins over Pt/ZSM-35 catalysts[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5086-5094. | |
9 | 崔楼伟, 何观伟, 顾建峰, 等. 小晶粒SAPO-11分子筛合成及其正己烷异构化催化性能[J]. 工业催化, 2018, 26(9): 35-40. |
CUI Louwei, HE Guanwei, GU Jianfeng, et al. Synthesis of small crystal SAPO-11 molecular sieve and its catalytic activity for n-hexane hydroisomerization[J]. Industrial Catalysis, 2018, 26(9): 35-40. | |
10 | ZHANG L, FU W Q, HE L W, et al. Design and synthesis of Pt catalyst supported on ZSM-22 nanocrystals with increased accessible 10-MR pore mouths and acidic sites for long-chain n-alkane hydroisomerization[J]. Microporous and Mesoporous Materials, 2021, 313: 110834. |
11 | OKAMOTO M, HUANG L L, YAMANO M, et al. Skeletal isomerization of tetradecane catalyzed by TON-type zeolites with a fragmented core-shell structure[J]. Applied Catalysis A: General, 2013, 455: 122-128. |
12 | LIU S Y, ZHANG L, ZHANG L W, et al. Function of well-established mesoporous layers of recrystallized ZSM-22 zeolites in the catalytic performance of n-alkane isomerization[J]. New Journal of Chemistry, 2020, 44(12): 4744-4754. |
13 | HE L W, FU W Q, LI L Y, et al. Study of CA-treated ZSM-22 zeolite with enhanced catalytic performance in the hydroisomerization of long-chain n-dodecane[J]. New Journal of Chemistry, 2021, 45(5): 2820-2829. |
14 | CLAUDE M C, MARTENS J A. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. Journal of Catalysis, 2000, 190(1): 39-48. |
15 | SOUVERIJNS W, MARTENS J A, FROMENT G F, et al. Hydrocracking of isoheptadecanes on Pt/H-ZSM-22: an example of pore mouth catalysis[J]. Journal of Catalysis, 1998, 174(2): 177-184. |
16 | LAXMI NARASIMHAN C S, THYBAUT J W, MARIN G B, et al. Kinetic modeling of pore mouth catalysis in the hydroconversion of n-octane on Pt-H-ZSM-22[J]. Journal of Catalysis, 2003, 220(2): 399-413. |
17 | MARTENS J A, VERBOEKEND D, THOMAS K, et al. Hydroisomerization of emerging renewable hydrocarbons using hierarchical Pt/H-ZSM-22 catalyst[J]. ChemSusChem, 2013, 6(3): 421-425. |
18 | VERBOEKEND D, THOMAS K, MILINA M, et al. Towards more efficient monodimensional zeolite catalysts: n-alkane hydro-isomerisation on hierarchical ZSM-22[J]. Catalysis Science & Technology, 2011, 1(8): 1331-1335. |
19 | 徐如人, 庞文琴, 于吉红, 等. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004. |
XU Ruren, PANG Wenqin, YU Jihong, et al. Chemistry-zeolites and porous materials[M]. Beijing: Science Press, 2004. | |
20 | 缪平. 晶体生长抑制剂含量对ZSM-5分子筛晶化合成及催化MTP反应性能的影响[J]. 天然气化工(C1化学与化工), 2018, 43(3): 6-14. |
MIAO Ping. Effect of the content of crystal growth inhibitor on the synthesis of ZSM-5 molecular sieve and its performance in MTP reaction[J]. Natural Gas Chemical Industry, 2018, 43(3): 6-14. | |
21 | 贺振富, 代振宇, 龙军. 硅-铝催化剂酸中心形成及其结构[J]. 石油学报(石油加工), 2011, 27(1): 11-19. |
HE Zhenfu, DAI Zhenyu, LONG Jun. Formation and structural characteristics of acidic centers of silica-alumina catalyst[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2011, 27(1): 11-19. | |
22 | WANG Y D, TAO Z C, WU B S, et al. Effect of metal precursors on the performance of Pt/ZSM-22 catalysts for n-hexadecane hydroisomerization[J]. Journal of Catalysis, 2015, 322: 1-13. |
23 | CHEN Z Q, LIU S Y, WANG H H, et al. Synthesis and characterization of bundle-shaped ZSM-22 zeolite via the oriented fusion of nanorods and its enhanced isomerization performance[J]. Journal of Catalysis, 2018, 361: 177-185. |
24 | WANG X Y, ZHANG X W, WANG Q F. N-dodecane hydroisomerization over Pt/ZSM-22: controllable microporous Brönsted acidity distribution and shape-selectivity[J]. Applied Catalysis A: General, 2020, 590: 117335. |
[1] | Zhe YANG, Dalai XI, Ning LI, Jun ZHOU. Numerical simulation and experimental performance evaluation of microchannel structure [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 39-47. |
[2] | Dan ZHANG, Minbo YANG, Xiao FENG, Yufei WANG. Effects of reactor stages on energy and economic performance of methanol to aromatics process [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3556-3562. |
[3] | Songhua ZHANG,Mingcheng XIONG,Zi WANG,Fengcai LIN,Ting WANG,Yongmei LIN,Biao HUANG. Preparation of fluorescent cellulose nanocrystals based on mechanical force chemical effect [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1405-1413. |
[4] | Yu LIU, Juan TAN, Jing LIU, Huifeng WANG. Production of bio-jet fuel by hydrocracking and hydroisomerization of long-chain normal bio-paraffins over Pt/ZSM-35 catalysts [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5086-5094. |
[5] | WU Jie, DI Zuoxing, LUO Mingsheng, WANG Yatao, DING Xiaoxiao, LI Hongjuan. Study of the effects of temperature and pressure on the coal pyrolysis in the atmosphere of N2 [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 116-121. |
[6] | Shuai WANG,Jiaqiang JING,Xuehua SONG,Xiaoyan SHEN,Lu CHEN. Yield characteristics of heavy oil emulsion and prediction for pipeline start-up pressure [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4020-4028. |
[7] | Guanghua ZHANG,Dan LIU,Fan WANG,Mingyuan GUO,Jinxia TANG. Synthesis and properties of stilbene type waterborne polyurethane emulsion with fluorescent for high yield pulp paper whitening [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5084-5090. |
[8] | Junli ZHANG, Junbo GONG, Hua SUN, Zhigang DUAN, Weiguo HU. Study and application of the continuous crystallization process of cefalexin [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3349-3354. |
[9] | Liangcai WANG,Huanhuan MA,Jianbin ZHOU. Effect of carbonization process on physiochemical properties of digestate [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1545-1551. |
[10] | SUN Zelu, WANG Li. Application of an anti-coking additive Z-18 in RFCC unit of niger refinery [J]. Chemical Industry and Engineering Progree, 2016, 35(S2): 443-447. |
[11] | LI Wen, ZHANG Huahua, YAN Ruitao, ZHOU Wenjuan, CHEN Yanjun, ZHANG Chaocan. Research progress of maleic anhydride grafted polyethylene for hot melt adhesive [J]. Chemical Industry and Engineering Progree, 2016, 35(09): 2845-2849. |
[12] | SU Xin, PEI Huajian, WU Yingya, GAO Jinsen, LAN Xingying. Predicting coke yield of FCC unit using genetic algorithm optimized BP neural network [J]. Chemical Industry and Engineering Progree, 2016, 35(02): 389-396. |
[13] | LIANG Litong, HUANG Wei, ZHANG Qian, LIU Jianwei, HAO Xiaogang, ZHANG Zhonglin. Research status and advances in catalytic pyrolysis of low-rank coal [J]. Chemical Industry and Engineering Progree, 2015, 34(10): 3617-3622,3675. |
[14] | YIN Hai, XU Jin, WANG Zhongming, HAO Xiaohong, YUAN Zhenhong, WANG Yabing. Research on microalgae oil extraction by organic solvent [J]. Chemical Industry and Engineering Progree, 2015, 34(05): 1291-1294,1306. |
[15] | QIN Hong, YUE Yaokui, LIU Hongpeng, WANG Qing. Current status and prospect of oil shale retorting technologies in China [J]. Chemical Industry and Engineering Progree, 2015, 34(05): 1191-1198. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 471
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 298
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |