1 |
CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. ChemInform, 2007, 38(36): 2411-2502.
|
2 |
ZHANG Jun, WU Shubin, LI Bo, et al. Advances in the catalytic production of valuable levulinic acid derivatives[J]. ChemCatChem, 2012, 4(9): 1230-1237.
|
3 |
张战. γ-戊内酯催化转化为高辛烷值汽油的研究[D]. 郑州: 郑州大学, 2014.
|
|
ZHANG Zhan. Conversion of gamma-valerolactone (GVL) into high octane number gasoline [D]. Zhengzhou: Zhengzhou University, 2014.
|
4 |
MAO R, ZHAO Q, DIMA G, et al. New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction[J]. Catalysis Letters, 2011, 141(2): 271-276.
|
5 |
ZHANG Zehui, DONG Kun, ZHAO Zongbao. Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic-inorganic hybrid solid acid catalyst[J]. ChemSusChem, 2011, 4(1): 112-118.
|
6 |
YADAV G D, BORKAR I V. Kinetic modeling of immobilized lipase catalysis in synthesis of n-butyl levulinate[J]. Industrial & Engineering Chemistry Research, 2008, 47(10): 3358-3363.
|
7 |
LI Hong, WU Chuanhui, HAO Zhiqiang, et al. Process intensification in vapor-liquid mass transfer: the state-of-the-art[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1236-1246.
|
8 |
SEGOVIA-HERNÁNDEZ J G, HERNÁNDEZ S, BONILLA PETRICIOLET A. Reactive distillation: a review of optimal design using deterministic and stochastic techniques[J]. Chemical Engineering and Processing: Process Intensification, 2015, 97: 134-143.
|
9 |
HENLEY E J, SEADER J D. Equilibrium-stage separation operations in chemical engineering[M]. New York: John Wiley & Sons, Inc., 1981.
|
10 |
LUYBEN W L. Distillation design and control using AspenTM simulation[M]. Hoboken: John Wiley & Sons, Inc., 2013.
|
11 |
孙兰义. 化工流程模拟实训: Aspen Plus教程[M]. 北京: 化学工业出版社, 2012.
|
|
SUN Lanyi. Chemical engineering process simulation using Aspen Plus[M]. Beijing: Chemical Industry Press, 2012.
|
12 |
NOVITA F J, LEE H Y, LEE M. Energy-efficient design of an ethyl levulinate reactive distillation process via a thermally coupled distillation with external heat integration arrangement[J]. Industrial & Engineering Chemistry Research, 2017, 56(24): 7037-7048.
|
13 |
LI Hong, WU Yan, LI Xingang, et al. State-of-the-art of advanced distillation technologies in China[J]. Chemical Engineering & Technology, 2016, 39(5): 815-833.
|
14 |
RESK A J, PEEREBOOM L, KOLAH A K, et al. Phase equilibria in systems with levulinic acid and ethyl levulinate[J]. Journal of Chemical & Engineering Data, 2014, 59(4): 1062-1068.
|
15 |
YANG Pengfei, LI Xingang, LI Hong, et al. Unraveling the influence of residence time distribution on the performance of reactive distillation—Process optimization and experimental validation[J]. Chemical Engineering Science, 2021, 237: 116559.
|
16 |
LI Xingang, WANG Rui, YAN Yutao, et al. Ethylene glycol recovery from 2-ethyl-1, 3-dioxolane hydrolysis via reactive distillation: pilot-scale experiments and process analysis[J]. Industrial & Engineering Chemistry Research, 2019, 58(45): 20746-20757.
|
17 |
LI Hong, XIAO Caichun, LI Xingang, et al. Synthesis of n-amyl acetate in a pilot plant catalytic distillation column with seepage catalytic packing internal[J]. Industrial & Engineering Chemistry Research, 2017, 56(44): 12726-12737.
|
18 |
LI Xingang, ZHANG Hui, GAO Xin, et al. Hydrodynamic simulations of seepage catalytic packing internal for catalytic distillation column[J]. Industrial & Engineering Chemistry Research, 2012, 51(43): 14236-14246.
|
19 |
HAN Wentao, HAN Zhenwei, GAO Xuechao, et al. Inter-integration membrane-reactive distillation for EL synthesis: equipment development and experimental validating[J]. DOI: 10.22541/au.161516516.65110579/v1 .
|
20 |
CHENG Yucheng, YU Cheng-Ching. Effects of feed tray locations to the design of reactive distillation and its implication to control[J]. Chemical Engineering Science, 2005, 60(17): 4661-4677.
|