Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1539-1555.DOI: 10.16085/j.issn.1000-6613.2021-2003
• Chemical energy storage • Previous Articles Next Articles
GAO Weitao(), LEI Yijie, ZHANG Xun, HU Xiaobo, SONG Pingping, ZHAO Qing, WANG Cheng(), MAO Zongqiang
Received:
2021-09-23
Revised:
2021-12-07
Online:
2022-03-28
Published:
2022-03-23
Contact:
WANG Cheng
高帷韬(), 雷一杰, 张勋, 胡晓波, 宋平平, 赵卿, 王诚(), 毛宗强
通讯作者:
王诚
作者简介:
高帷韬(1996—),男,博士研究生,研究方向为燃料电池。E-mail:基金资助:
CLC Number:
GAO Weitao, LEI Yijie, ZHANG Xun, HU Xiaobo, SONG Pingping, ZHAO Qing, WANG Cheng, MAO Zongqiang. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555.
高帷韬, 雷一杰, 张勋, 胡晓波, 宋平平, 赵卿, 王诚, 毛宗强. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2003
1 | 王墨林, 王贺武, 欧阳明高, 等. 燃料电池汽车及氢能基础设施在美国的最新进展[J]. 汽车安全与节能学报, 2013, 4(2): 178-184. |
WANG Molin, WANG Hewu, OUYANG Minggao, et al. Latest developments of fuel cell vehicles and hydrogen supply infrastructures in American[J]. Journal of Automotive Safety and Energy, 2013, 4(2): 178-184. | |
2 | XU L F, MUELLER C D, LI J Q, et al. Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles[J]. Applied Energy, 2015, 157: 664-674. |
3 | 王诚, 王树博, 张剑波, 等. 车用质子交换膜燃料电池材料部件[J]. 化学进展, 2015, 27(Z1): 310-320. |
WANG Cheng, WANG Shubo, ZHANG Jianbo, et al. The key materials and components for proton exchange membrane fuel cell[J]. Progress in Chemistry, 2015, 27(Z1): 310-320. | |
4 | CHEN H C, PEI P C, SONG M C. Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells[J]. Applied Energy, 2015, 142: 154-163. |
5 | 刘锋, 王诚, 张剑波, 等. 质子交换膜燃料电池有序化膜电极[J]. 化学进展, 2014, 26(11): 1763-1771. |
LIU Feng, WANG Cheng, ZHANG Jianbo, et al. Ordered membrane electrode assembly of proton exchange membrane fuel cell[J]. Progress in Chemistry, 2014, 26(11): 1763-1771. | |
6 | 王诚, 王树博, 张剑波, 等. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424-435. |
WANG Cheng, WANG Shubo, ZHANG Jianbo, et al. The durability research on the proton exchange membrane fuel cell for automobile application[J]. Progress in Chemistry, 2015, 27(4): 424-435. | |
7 | BENJAMIN T, BORUP R, GARLAND N,et al. Fuel cell technical team roadmap[R]. US Department of Energy, Fuel Cell Technologies Office, 2017. |
8 | YOSHIDA T, KOJIMA K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society[J]. Interface Magazine, 2015, 24(2): 45-49. |
9 | 蒋尚峰, 衣宝廉. 有序化膜电极研究进展[J]. 电化学, 2016, 22(3): 213-218. |
JIANG Shangfeng, YI Baolian. Progress of order-structured membrane electrode assembly[J]. Journal of Electrochemistry, 2016, 22(3): 213-218. | |
10 | SUN Y Y, CUI L R, GONG J, et al. Design of a catalytic layer with hierarchical proton transport structure: the role of nafion nanofiber[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 2955-2963. |
11 | HU Z Y, LI J Q, XU L F, et al. Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles[J]. Energy Conversion and Management, 2016, 129: 108-121. |
12 | 宋显珠, 郑明月, 肖劲松, 等. 氢燃料电池关键材料发展现状及研究进展[J]. 材料导报, 2020, 34(S2): 1001-1005, 1016. |
SONG Xianzhu, ZHENG Mingyue, XIAO Jinsong, et al. Research progress on development status and trend of key materials of hydrogen fuel cells[J]. Materials Reports, 2020, 34(S2): 1001-1005, 1016. | |
13 | IOROI T, SIROMA Z, YAMAZAKI S I, et al. Electrocatalysts for PEM fuel cells[J]. Advanced Energy Materials, 2019, 9(23): 1801284. |
14 | LIN R, CAI X, ZENG H, et al. Stability of high-performance Pt-based catalysts for oxygen reduction reactions[J]. Advanced Materials, 2018, 30(17): 1705332. |
15 | STACY J, REGMI Y N, LEONARD B, et al. The recent progress and future of oxygen reduction reaction catalysis: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 401-414. |
16 | WANG X X, SWIHART M T, WU G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J]. Nature Catalysis, 2019, 2(7): 578-589. |
17 | ZHANG B W, YANG H L, WANG Y X, et al. A comprehensive review on controlling surface composition of Pt-based bimetallic electrocatalysts[J]. Advanced Energy Materials, 2018, 8(20): 1703597. |
18 | LIU M L, ZHAO Z P, DUAN X F, et al. Nanoscale structure design for high-performance Pt-based ORR catalysts[J]. Advanced Materials, 2019, 31(6): 1802234. |
19 | KONGKANAND A, MATHIAS M F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(7): 1127-1137. |
20 | ZHAO Z P, HOSSAIN M D, XU C C, et al. Tailoring a three-phase microenvironment for high-performance oxygen reduction reaction in proton exchange membrane fuel cells[J]. Matter, 2020, 3(5): 1774-1790. |
21 | MA R G, LIN G X, ZHOU Y, et al. A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts[J]. NPJ Computational Materials, 2019, 5: 78. |
22 | WANG Y M, ZOU L L, HUANG Q H, et al. 3D carbon aerogel-supported PtNi intermetallic nanoparticles with high metal loading as a durable oxygen reduction electrocatalyst[J]. International Journal of Hydrogen Energy, 2017, 42(43): 26695-26703. |
23 | KIM Y, LEE D, KWON Y, et al. Enhanced electrochemical oxygen reduction reaction performance with Pt nanocluster catalysts supported on microporous graphene-like 3D carbon[J]. Journal of Electroanalytical Chemistry, 2019, 838: 89-93. |
24 | BARIM S B, BOZBAG S E, YU H B, et al. Mesoporous carbon aerogel supported PtCu bimetallic nanoparticles via supercritical deposition and their dealloying and electrocatalytic behaviour[J]. Catalysis Today, 2018, 310: 166-175. |
25 | ROSADO G, VERDE Y, VALENZUELA-MUÑIZ A M, et al. Catalytic activity of Pt-Ni nanoparticles supported on multi-walled carbon nanotubes for the oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2016, 41(48): 23260-23271. |
26 | WU D Z, SHEN X C, ZHOU L Q, et al. A vacuum impregnation method for synthesizing octahedral Pt2CuNi nanoparticles on mesoporous carbon support and the oxygen reduction reaction electrocatalytic properties[J]. Journal of Colloid and Interface Science, 2020, 564: 245-253. |
27 | ZHAO Y G, LIU J J, WU Y J, et al. Proton conductive Pt-Co nanoparticles anchoring on citric acid functionalized graphene for efficient oxygen reduction reaction[J]. Journal of Power Sources, 2017, 360: 528-537. |
28 | WU Z X, SONG M, WANG J, et al. Recent progress in nitrogen-doped metal-free electrocatalysts for oxygen reduction reaction[J]. Catalysts, 2018, 8(5): 196. |
29 | LI J C, HOU P X, LIU C. Heteroatom-doped carbon nanotube and graphene-based electrocatalysts for oxygen reduction reaction[J]. Small, 2017, 13(45): 1702002. |
30 | ZHANG H J, YAO S, GENG J, et al. Oxygen reduction reaction with efficient, metal-free nitrogen, fluoride-codoped carbon electrocatalysts derived from melamine hydrogen fluoride salt[J]. Journal of Colloid and Interface Science, 2019, 535: 436-443. |
31 | LYU Q, SI W Y, HE J J, et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction[J]. Nature Communications, 2018, 9: 3376. |
32 | CAZETTA A L, SPESSATO L, BEDIN K C, et al. Metal-free ovalbumin-derived N-S-co-doped nanoporous carbon materials as efficient electrocatalysts for oxygen reduction reaction[J]. Applied Surface Science, 2019, 467/468: 75-83. |
33 | 竹涛, 韩一伟, 刘帅, 等 .单原子位点催化剂及其电催化应用研究进展[J].化工进展, 2022,41(2):666-618. |
ZHU Tao, HAN Yiwei, LIU Shuai, et al. Progress in electrocatalysis by single-atom site catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 666-618. | |
34 | LIN Y C, LIU P Y, VELASCO E, et al. Fabricating single-atom catalysts from chelating metal in open frameworks[J]. Advanced Materials, 2019, 31(18): 1808193. |
35 | JIAO K, XUAN J, DU Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. |
36 | 文颖. 非铂氧还原催化剂的制备及其性能研究[D]. 南宁: 广西大学, 2020. |
WEN Ying. Preparation and performance of low-/non-platinum catalyst for oxygen reduction reaction[D]. Nanning: Guangxi University, 2020. | |
37 | ZHANG Y P, HU Y Y, LI S Z, et al. Manganese dioxide-coated carbon nanotubes as an improved cathodic catalyst for oxygen reduction in a microbial fuel cell[J]. Journal of Power Sources, 2011, 196(22): 9284-9289. |
38 | WANG H L, LIANG Y Y, LI Y G, et al. Co1- x S-graphene hybrid: a high-performance metal chalcogenide electrocatalyst for oxygen reduction[J]. Angewandte Chemie International Edition, 2011, 50(46): 10969-10972. |
39 | FENG Y J, HE T, ALONSO-VANTE N. In situ free-surfactant synthesis and ORR-electrochemistry of carbon-supported Co3S4 and CoSe2 nanoparticles[J]. Chemistry of Materials, 2008, 20(1): 26-28. |
40 | LIU J, SUN X J, SONG P, et al. High-performance oxygen reduction electrocatalysts based on cheap carbon black, nitrogen, and trace iron[J]. Advanced Materials, 2013, 25(47): 6879-6883. |
41 | CHONG L, WEN J, KUBAL J, et al. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks[J]. Science, 2018, 362(6420): 1276-1281. |
42 | 魏子栋. 质子交换膜燃料电池催化剂性能增强方法研究进展[J]. 化工进展, 2016, 35(9): 2629-2639. |
WEI Zidong. Advances of the catalytic performance enhancement for proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2629-2639. | |
43 | TAO L, HUANG B L, JIN F D, et al. Atomic PdAu interlayer sandwiched into Pd/Pt core/shell nanowires achieves superstable oxygen reduction catalysis[J]. ACS Nano, 2020, 14(9): 11570-11578. |
44 | LUO M C, SUN Y J, ZHANG X, et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis[J]. Advanced Materials, 2018, 30(10): 1705515. |
45 | QIN Y C, ZHANG W L, GUO K, et al. Fine-tuning intrinsic strain in penta-twinned Pt-Cu-Mn nanoframes boosts oxygen reduction catalysis[J]. Advanced Functional Materials, 2020, 30(11): 1910107. |
46 | KONG F, REN Z, NOROUZI BANIS M, et al. Active and stable Pt-Ni alloy octahedra catalyst for oxygen reduction via near-surface atomical engineering[J]. ACS Catalysis, 2020, 10(7): 4205-4214. |
47 | TAO L, YU D, ZHOU J S, et al. Ultrathin wall (1nm) and superlong Pt nanotubes with enhanced oxygen reduction reaction performance[J]. Small, 2018, 14(22): 1704503. |
48 | BU L Z, GUO S J, ZHANG X, et al. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis[J]. Nature Communications, 2016, 7: 11850. |
49 | CHEN S, NIU Z, XIE C, et al. Effects of catalyst processing on the activity and stability of Pt-Ni nanoframe electrocatalysts[J]. ACS Nano, 2018, 12(8): 8697-8705. |
50 | TIAN X, ZHAO X, SU Y Q, et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells[J]. Science, 2019, 366(6467): 850-856. |
51 | ESCORIHUELA J, NARDUCCI R, COMPAÑ V, et al. Proton conductivity of composite polyelectrolyte membranes with metal-organic frameworks for fuel cell applications[J]. Advanced Materials Interfaces, 2019, 6(2): 1801146. |
52 | BLIZNAKOV S T, VUKMIROVIC M B, YANG L, et al. Pt monolayer on electrodeposited Pd nanostructures: advanced cathode catalysts for PEM fuel cells[J]. Journal of the Electrochemical Society, 2012, 159(9): F501-F506. |
53 | CHEN C, KANG Y, HUO Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339-1343. |
54 | CHEN M, ZHAO C, SUN F M, et al. Research progress of catalyst layer and interlayer interface structures in membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) system[J]. eTransportation, 2020, 5: 100075. |
55 | ABDEL-BASET T, BENJAMIN T, BORUP R,et al. Fuel cell technical team roadmap[R]. US Department of Energy, Fuel Cell Technologies Office, 2013. |
56 | LEE M, UCHIDA M, YANO H, et al. New evaluation method for the effectiveness of platinum/carbon electrocatalysts under operating conditions[J]. Electrochimica Acta, 2010, 55(28): 8504-8512. |
57 | CHEN G Y, WANG C, LEI Y J, et al. Gradient design of Pt/C ratio and Nafion content in cathode catalyst layer of PEMFCs[J]. International Journal of Hydrogen Energy, 2017, 42(50): 29960-29965. |
58 | QIU Y L, ZHANG H M, ZHONG H X, et al. A novel cathode structure with double catalyst layers and low Pt loading for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5836-5844. |
59 | TIAN Z Q, LIM S H, POH C K, et al. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells[J]. Advanced Energy Materials, 2011, 1(6): 1205-1214. |
60 | ZHANG C K, YU H M, LI Y K, et al. Highly stable ternary tin-palladium-platinum catalysts supported on hydrogenated TiO2 nanotube arrays for fuel cells[J]. Nanoscale, 2013, 5(15): 6834. |
61 | XIA Z X, WANG S L, JIANG L H, et al. Bio-inspired construction of advanced fuel cell cathode with Pt anchored in ordered hybrid polymer matrix[J]. Scientific Reports, 2015, 5: 16100. |
62 | PAN C F, WU H, WANG C, et al. Nanowire-based high-performance “micro fuel cells”: one nanowire, one fuel cell[J]. Advanced Materials, 2008, 20(9): 1644-1648. |
63 | ZENG Y C, SHAO Z G, ZHANG H J, et al. Nanostructured ultrathin catalyst layer based on open-walled PtCo bimetallic nanotube arrays for proton exchange membrane fuel cells[J]. Nano Energy, 2017, 34: 344-355. |
64 | KRAYTSBERG A, EIN-ELI Y. Review of advanced materials for proton exchange membrane fuel cells[J]. Energy & Fuels, 2014, 28(12): 7303-7330. |
65 | DURANTE V A, DELANEY W E. Highly stable fuel cell membranes and methods of making them: US20090155662[P]. 2009-06-18. |
66 | YOON K R, LEE K A, JO S, et al. Mussel-inspired polydopamine-treated reinforced composite membranes with self-supported CeO x radical scavengers for highly stable PEM fuel cells[J]. Advanced Functional Materials, 2019, 29(3): 1806929. |
67 | 翟云峰, 张华民, 叶威, 等. 磷酸流失对H3PO4/PBI高温PEMFC性能的影响[J]. 电池, 2008, 38(1): 3-7. |
ZHAI Yunfeng, ZHANG Huamin, YE Wei, et al. Influences of H3PO4 leaching on the performance of H3PO4/PBI high temperature PEMFC[J]. Battery Bimonthly, 2008, 38(1): 3-7. | |
68 | 李金晟, 葛君杰, 刘长鹏, 等. 燃料电池高温质子交换膜研究进展[J]. 化工进展, 2021, 40(9): 4894-4903. |
LI Jinsheng, GE Junjie, LIU Changpeng, et al. Review on high temperature proton exchange membranes for fuel cell[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4894-4903. | |
69 | 吴魁, 解东来. 高温质子交换膜研究进展[J]. 化工进展, 2012, 31(10): 2202-2206, 2220. |
WU Kui, XIE Donglai. Research progress in high temperature proton exchange membranes[J]. Chemical Industry and Engineering Progress, 2012, 31(10): 2202-2206, 2220. | |
70 | PARK C H, LEE S Y, HWANG D S, et al. Nanocrack-regulated self-humidifying membranes[J]. Nature, 2016, 532(7600): 480-483. |
71 | OZDEN A, SHAHGALDI S, LI X G, et al. A review of gas diffusion layers for proton exchange membrane fuel cells—With a focus on characteristics, characterization techniques, materials and designs[J]. Progress in Energy and Combustion Science, 2019, 74: 50-102. |
72 | JIAO K, LI X G. Water transport in polymer electrolyte membrane fuel cells[J]. Progress in Energy and Combustion Science, 2011, 37(3): 221-291. |
73 | YUN W. Porous-media flow fields for polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2009, 156(10): B1134. |
74 | TANAKA S, BRADFIELD W W, LEGRAND C, et al. Numerical and experimental study of the effects of the electrical resistance and diffusivity under clamping pressure on the performance of a metallic gas-diffusion layer in polymer electrolyte fuel cells[J]. Journal of Power Sources, 2016, 330: 273-284. |
75 | LEE J, HINEBAUGH J, BAZYLAK A. Synchrotron X-ray radiographic investigations of liquid water transport behavior in a PEMFC with MPL-coated GDLs[J]. Journal of Power Sources, 2013, 227: 123-130. |
76 | AMAMIYA I, TANAKA S. Current topics proposed by PEFC manufacturers, etc. -current status and topics of fuel cells for FCV[EB/OL]. . |
77 | SUN R L, XIA Z X, YANG C R, et al. Experimental measurement of proton conductivity and electronic conductivity of membrane electrode assembly for proton exchange membrane fuel cells[J]. Progress in Natural Science: Materials International, 2020, 30(6): 912-917. |
78 | BREITWIESER M, KLINGELE M, VIERRATH S, et al. Tailoring the membrane-electrode interface in PEM fuel cells: a review and perspective on novel engineering approaches[J]. Advanced Energy Materials, 2018, 8(4): 1701257. |
79 | KOH J K, JEON Y, CHO Y I, et al. A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications[J]. Journal of Materials Chemistry A, 2014, 2(23): 8652-8659. |
80 | KLINGELE M, BREITWIESER M, ZENGERLE R, et al. Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells[J]. Journal of Materials Chemistry A, 2015, 3(21): 11239-11245. |
81 | KONGKANAND A, SUBRAMANIAN N P, YU Y C, et al. Achieving high-power PEM fuel cell performance with an ultralow-Pt-content core-shell catalyst[J]. ACS Catalysis, 2016, 6(3): 1578-1583. |
82 | JAMES B. Cost projections of PEM fuel cell systems for automobiles and medium-duty vehicles[C]//Fuel Cell Technologies Office Webinar, 2018. |
83 | ZHAO J, LI X G. A review of polymer electrolyte membrane fuel cell durability for vehicular applications: degradation modes and experimental techniques[J]. Energy Conversion and Management, 2019, 199: 112022. |
84 | LI Y B, ZHOU Z F, LIU X L, et al. Modeling of PEM fuel cell with thin MEA under low humidity operating condition[J]. Applied Energy, 2019, 242: 1513-1527. |
85 | HANIF S, SHI X, IQBAL N, et al. ZIF derived PtNiCo/NC cathode catalyst for proton exchange membrane fuel cell[J]. Applied Catalysis B: Environmental, 2019, 258: 117947. |
86 | BORUP R, WEBER A. FC-PAD: fuel cell performance and durability consortium[R]. Office of Scientific and Technical Information (OSTI), 2018. |
87 | BARZEGARI M M, GHADIMI M, MOMENIFAR M. Investigation of contact pressure distribution on gas diffusion layer of fuel cell with pneumatic endplate[J]. Applied Energy, 2020, 263: 114663. |
88 | SONG Y X, ZHANG C Z, LING C Y, et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(54): 29832-29847. |
89 | ZHANG X, YANG X L, GAO W T, et al. An experimental research on the net output power and current density distribution of PEM fuel cells with trapezoid baffled flow fields[J]. International Journal of Energy Research, 2021, 45(15): 21464-21475. |
90 | MOJICA F, RAHMAN M A, MORA J M, et al. Experimental study of three channel designs with model comparison in a PEM fuel cell[J]. Fuel Cells, 2020, 20(5): 547-557. |
91 | ZHANG H T, LI X G, LIU X Z, et al. Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management[J]. Applied Energy, 2019, 241: 483-490. |
92 | CHEN R X, QIN Y Z, DU Q, et al. Effects of clamping force on the operating behavior of PEM fuel cell[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. |
93 | ZHOU Z H, QIU D K, ZHAI S, et al. Investigation of the assembly for high-power proton exchange membrane fuel cell stacks through an efficient equivalent model[J]. Applied Energy, 2020, 277: 115532. |
94 | ZHANG G B, XIE B, BAO Z M, et al. Multi-phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field[J]. International Journal of Energy Research, 2018, 42(15): 4697-4709. |
95 | 李建秋, 方川, 徐梁飞. 燃料电池汽车研究现状及发展[J]. 汽车安全与节能学报, 2014, 5(1): 17-29. |
LI Jianqiu, FANG Chuan, XU Liangfei. Current status and trends of the research and development for fuel cell vehicles[J]. Journal of Automotive Safety and Energy, 2014, 5(1): 17-29. | |
96 | GAO W T, HU Z Y, HUANG H Y, et al. All-condition economy evaluation method for fuel cell systems: system efficiency contour map[J]. eTransportation, 2021, 9: 100127. |
97 | HASEGAWA T, IMANISHI H, NADA M, et al. Development of the fuel cell system in the mirai FCV[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2016. |
98 | TERANISHI K, KAWATA K, TSUSHIMA S, et al. Degradation mechanism of PEMFC under open circuit operation[J]. Electrochemical and Solid-State Letters, 2006, 9(10): A475. |
99 | INABA M, KINUMOTO T, KIRIAKE M, et al. Gas crossover and membrane degradation in polymer electrolyte fuel cells[J]. Electrochimica Acta, 2006, 51(26): 5746-5753. |
100 | CURTIN D E, LOUSENBERG R D, HENRY T J, et al. Advanced materials for improved PEMFC performance and life[J]. Journal of Power Sources, 2004, 131(1/2): 41-48. |
101 | YU W, XU S C, NI H S. Air compressors for fuel cell vehicles: an systematic review[J]. SAE International Journal of Alternative Powertrains, 2015, 4(1): 115-122. |
102 | LLAMAS X, ERIKSSON L. Control-oriented compressor model with adiabatic efficiency extrapolation[J]. SAE International Journal of Engines, 2017, 10(4): 1903-1916. |
103 | 张奥, 杨军, 吴桐, 等. 燃料电池车载氢气供给系统概述[J]. 船电技术, 2019, 39(9): 53-56. |
ZHANG Ao, YANG Jun, WU Tong, et al. Application of hydrogen supply system for fuel cell vehicles[J]. Marine Electric & Electronic Engineering, 2019, 39(9): 53-56. | |
104 | CHEN J X, SIEGEL J B, STEFANOPOULOU A G, et al. Optimization of purge cycle for dead-ended anode fuel cell operation[J]. International Journal of Hydrogen Energy, 2013, 38(12): 5092-5105. |
105 | 马秋玉, 王宇鹏, 都京, 等. 燃料电池发动机氢气循环设计方案综述[J]. 汽车文摘, 2019(4): 11-14. |
MA Qiuyu, WANG Yupeng, DU Jing, et al. Research on the hydrogen circulation system of fuel cell[J]. Automotive Digest, 2019(4): 11-14. | |
106 | 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469-477. |
SHAO Zhigang, YI Baolian. Developing trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 469-477. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[6] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[13] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[14] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[15] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |