Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (9): 5491-5502.DOI: 10.16085/j.issn.1000-6613.2025-0266
• Resources and environmental engineering • Previous Articles
WANG Hao1,2(
), LI Mengqi3, WANG Qingji2(
), WANG Lingyun4, LUO Zhen2, SONG Quanwei2, LI Xingchun2, HE Xuwen3
Received:2025-03-10
Revised:2025-04-19
Online:2025-09-30
Published:2025-09-25
Contact:
WANG Qingji
王浩1,2(
), 李梦琪3, 王庆吉2(
), 王凌匀4, 罗臻2, 宋权威2, 李兴春2, 何绪文3
通讯作者:
王庆吉
作者简介:王浩(1991— ),男,博士,工程师,研究方向为水污染控制工程。E-mail:hao.wang@pku.edu.cn。
基金资助:CLC Number:
WANG Hao, LI Mengqi, WANG Qingji, WANG Lingyun, LUO Zhen, SONG Quanwei, LI Xingchun, HE Xuwen. Short-process treatment technology for ex-situ remediation of groundwater in oil-contaminated sites[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5491-5502.
王浩, 李梦琪, 王庆吉, 王凌匀, 罗臻, 宋权威, 李兴春, 何绪文. 石油污染场地地下水异位修复短程处理工艺[J]. 化工进展, 2025, 44(9): 5491-5502.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0266
| 项目 | 数据 |
|---|---|
| pH | 7.1~8.9 |
| 浊度/NTU | 190~320 |
| 含油量/mg·L-1 | 20~200 |
| COD/mg·L-1 | 2100~4900 |
| DOC/mg·L-1 | 420~1800 |
| 电导率/mS·cm-1 | 70~90 |
| 项目 | 数据 |
|---|---|
| pH | 7.1~8.9 |
| 浊度/NTU | 190~320 |
| 含油量/mg·L-1 | 20~200 |
| COD/mg·L-1 | 2100~4900 |
| DOC/mg·L-1 | 420~1800 |
| 电导率/mS·cm-1 | 70~90 |
| 项目 | Titan-UF-70 | Titan-NF-500 |
|---|---|---|
| 形状 | 平板膜 | 平板膜 |
| 截留分子量 | 70kDa | 500Da |
| 运行pH范围 | 1~13.5 | 1~13.5 |
| 最大含油浓度 | ≤10000mg/L | — |
| 项目 | Titan-UF-70 | Titan-NF-500 |
|---|---|---|
| 形状 | 平板膜 | 平板膜 |
| 截留分子量 | 70kDa | 500Da |
| 运行pH范围 | 1~13.5 | 1~13.5 |
| 最大含油浓度 | ≤10000mg/L | — |
| n | 膜污堵模型 | 线性公式 |
|---|---|---|
| 0 | 滤饼层污堵 | |
| 1.0 | 中间污堵 | |
| 1.5 | 标准污堵 | |
| 2.0 | 完全污堵 |
| n | 膜污堵模型 | 线性公式 |
|---|---|---|
| 0 | 滤饼层污堵 | |
| 1.0 | 中间污堵 | |
| 1.5 | 标准污堵 | |
| 2.0 | 完全污堵 |
| [1] | 周慧娣, 李海明, 肖瀚, 等. 石化场地污染土壤和地下水修复技术组合研究与应用进展[J]. 应用化工, 2024, 53(8): 1880-1885. |
| ZHOU Huidi, LI Haiming, XIAO Han, et al. Progress and prospect of research and application upon multi-technique collaborative remediation of contaminated soil and groundwater in petrochemical sites[J]. Applied Chemical Industry, 2024, 53(8): 1880-1885. | |
| [2] | 于靖靖, 梁田, 罗会龙, 等. 近10年来我国污染场地再利用的案例分析与环境管理意义[J]. 环境科学研究, 2022, 35(5): 1110-1119. |
| YU Jingjing, LIANG Tian, LUO Huilong, et al. Case analysis and environmental management significance of contaminated site reuse in China from 2011 to 2021[J]. Research of Environmental Sciences, 2022, 35(5): 1110-1119. | |
| [3] | 徐炳先, 彭雨欣, 付帅. 退役化工场地土壤有机污染特征及生态风险评价[J]. 环境工程, 2023, 41(S2): 742-746. |
| XU Bingxian, PENG Yuxin, FU Shuai. Characteristics and ecological risk assessment of soil organic pollution in decommissioned chemical sites[J]. Environmental Engineering, 2023, 41(S2): 742-746. | |
| [4] | 韩煦, 陈洁, 孙守钧, 等. 染料厂遗留场地中氯仿和苯并(a)芘的污染特征与健康风险评价[J]. 环境工程, 2021, 39(8): 211-216. |
| HAN Xu, CHEN Jie, SUN Shoujun, et al. Pollution analysis and spatial distribution of health risk in the residual site of dye factory[J]. Environmental Engineering, 2021, 39(8): 211-216. | |
| [5] | 罗臻, 王庆吉, 王占生, 等. 炼化污染场地抽出水强氧化短程处理工艺[J]. 化工进展, 2024, 43(7): 4155-4163. |
| LUO Zhen, WANG Qingji, WANG Zhansheng, et al. Strong oxidation coupled short range treatment of refining industry contaminated sites extraction water[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4155-4163. | |
| [6] | 杨明星, 杨悦锁, 杜新强, 等. 石油污染地下水有机污染组分特征及其环境指示效应[J]. 中国环境科学, 2013, 33(6): 1025-1032. |
| YANG Mingxing, YANG Yuesuo, DU Xinqiang, et al. Organic fractions and their environmental implications of petroleum contaminated groundwater[J]. China Environmental Science, 2013, 33(6): 1025-1032. | |
| [7] | 杨萌, 翁仕龙, 潘怡然, 等. 地下水污染修复技术研究进展[J]. 环境科学与管理, 2022, 47(4): 118-122. |
| YANG Meng, WENG Shilong, PAN Yiran, et al. Research progress on remediation technologies of groundwater pollution[J]. Environmental Science and Management, 2022, 47(4): 118-122. | |
| [8] | WEI Kunhao, MA Jie, XI Beidou, et al. Recent progress on in situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater[J]. Journal of Hazardous Materials, 2022, 432: 128738. |
| [9] | ALEGBELEYE Oluwadara Oluwaseun, OPEOLU Beatrice Oluwatoyin, JACKSON Vanessa Angela. Polycyclic aromatic hydrocarbons: A critical review of environmental occurrence and bioremediation[J]. Environmental Management, 2017, 60(4): 758-783. |
| [10] | THIRUVENKATACHARI R, VIGNESWARAN S, NAIDU R. Permeable reactive barrier for groundwater remediation[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(2): 145-156. |
| [11] | SONG Quanwei, XUE Zhenkun, WU Huijun, et al. The collaborative monitored natural attenuation (CMNA) of soil and groundwater pollution in large petrochemical enterprises: A case study[J]. Environmental Research, 2023, 216: 114816. |
| [12] | TRUEX Michael, JOHNSON Chris, MACBETH Tamzen, et al. Performance assessment of pump-and-treat systems[J]. Groundwater Monitoring & Remediation, 2017, 37(3): 28-44. |
| [13] | ANDREOZZI Roberto, CAPRIO Vincenzo, INSOLA Amedeo, et al. Advanced oxidation processes (AOP) for water purification and recovery[J]. Catalysis Today, 1999, 53(1): 51-59. |
| [14] | REKHATE Chhaya V, SRIVASTAVA J K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater—A review[J]. Chemical Engineering Journal Advances, 2020, 3: 100031. |
| [15] | WANG Jianlong, WANG Shizong. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
| [16] | WU Qitong. Wastewater treatment by enhanced H2O2-based advanced oxidation process (AOP) methods: A review[J]. Journal of Physics: Conference Series, 2022, 2152(1): 012011. |
| [17] | CHUANG Yi-Hsueh, CHEN Serena, CHINN Curtis J, et al. Comparing the UV/monochloramine and UV/free chlorine advanced oxidation processes (AOPs) to the UV/hydrogen peroxide AOP under scenarios relevant to potable reuse[J]. Environmental Science & Technology, 2017, 51(23): 13859-13868. |
| [18] | NIKIFOROV A Y, LEYS C. Influence of capillary geometry and applied voltage on hydrogen peroxide and OH radical formation in AC underwater electrical discharges[J]. Plasma Sources Science and Technology, 2007, 16(2): 273-280. |
| [19] | 刘青晨, 王华伟, 刘荣稳, 等. 混凝-臭氧氧化对渗滤液生化出水有机微污染物的去除效果[J]. 化工进展, 2024, 43(S1): 545-554. |
| LIU Qingchen, WANG Huawei, LIU Rongwen, et al. Removal effect of organic micro-pollutants from leachate biochemical effluent by coagulation-ozone oxidation[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 545-554. | |
| [20] | WANG Hao, ZHANG Siyu, HE Can, et al. Effect of pre-coagulation on catalytic ozonation in the tertiary treatment of coking wastewater: Kinetic and ozone consumption analysis[J]. Journal of Water Process Engineering, 2022, 48: 102856. |
| [21] | BROZELL Adrian M, DE GROOTH Joris, HOEK Eric M V. Five journeys from nanotechnology research to successful products in the water industry[J]. Nature Water, 2024, 2: 392-396. |
| [22] | BENGANI Prity, KOU Yangming, ASATEKIN Ayse. Zwitterionic copolymer self-assembly for fouling resistant, high flux membranes with size-based small molecule selectivity[J]. Journal of Membrane Science, 2015, 493: 755-765. |
| [23] | XIAO Kang, SHEN Yuexiao, LIANG Shuai, et al. Characteristic regions of the fluorescence excitation-emission matrix (EEM) to identify hydrophobic/hydrophilic contents of organic matter in membrane bioreactors[J]. Environmental Science & Technology, 2018, 52(19): 11251-11258. |
| [24] | 何绪文,王绍州,张学伟,等. 煤矿矿井水资源化绿色短流程关键技术与装备[J]. 煤炭学报. 2024, 49(2): 958-966. |
| HE Xuwen, WANG Shaozhou, ZHANG Xuewei, et al. Key technologies and equipment for green short process of coal mine drainageresource utilization[J]. Journal of China Coal Society, 2024, 49(2): 958-966. | |
| [25] | 何绪文, 王绍州, 张学伟, 等. 煤矿矿井水资源化利用技术创新[J]. 煤炭科学技术, 2023, 51(1): 523-530. |
| HE Xuwen, WANG Shaozhou, ZHANG Xuewei, et al. Coal mine drainage resources utilization technology innovation[J]. Coal Science and Technology, 2023, 51(1): 523-530. | |
| [26] | LEE Hyung-Sool, VERMAAS Wim F J, RITTMANN Bruce E. Biological hydrogen production: Prospects and challenges[J]. Trends in Biotechnology, 2010, 28(5): 262-271. |
| [27] | JIA Weihong, REN Sili, HU Bin. Effect of water chemistry on zeta potential of air bubbles[J]. International Journal of Electrochemical Science, 2013, 8(4): 5828-5837. |
| [28] | 刘崎峰, 王琦. 关于恒流状态下膜堵塞定律与神经网络模型的比较研究[J]. 内蒙古大学学报(自然科学版), 2012, 43(5): 551-560. |
| LIU Qifeng, WANG Qi. A comparison study between membrane blocking laws and artificial neural network(ANNs)model in constant flowrate condition[J]. Journal of Inner Mongolia University (Natural Science Edition), 2012, 43(5): 551-560. | |
| [29] | LIU Ze, YANG Xuetong, DEMEESTERE Kristof, et al. Insights into a packed bubble column for removal of several ozone-persistent TrOCs by ozonation: Removal kinetics, energy efficiency and elimination prediction[J]. Separation and Purification Technology, 2021, 275: 119170. |
| [30] | DONG Jie, YAO Jiakang, TAO Jinliang, et al. Degradation of Methyl Orange by ozone microbubble process with packing in the bubble column reactor[J]. Environmental Technology, 2023, 44(17): 2512-2524. |
| [31] | 童琴, 董亚梅, 赵昆峰, 等. 负载型稀土臭氧氧化催化剂在水处理中的应用进展[J]. 化工进展, 2019, 38(S1): 226-231. |
| TONG Qin, DONG Yamei, ZHAO Kunfeng, et al. Application progress of supported rare-earth ozone oxidation catalysts in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 226-231. | |
| [32] | 张兰河, 周靖, 郭映辉, 等. CeO2/Al2O3催化剂的制备表征及在污水处理中的应用[J]. 农业工程学报, 2017, 33(1): 219-224. |
| ZHANG Lanhe, ZHOU Jing, GUO Yinghui, et al. Preparation and characterization of CeO2/Al2O3 and its application on advanced treatment of wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 219-224. | |
| [33] | 王涛. 铜铈镧复合金属氧化物催化臭氧氧化橡胶废水的研究[D]. 北京: 北京化工大学, 2016. |
| WANG Tao. Study on ozone oxidation of rubber wastewater catalyzed by Cu-Ce-La composite metal oxide[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
| [34] | 王吉坤, 李阳, 陈贵锋, 等. 臭氧催化氧化降解煤化工生化进水有机物的实验及机理[J]. 化工进展, 2021, 40(10): 5837-5844. |
| WANG Jikun, LI Yang, CHEN Guifeng, et al. Experimental and mechanism studies on degradation of the organics in biochemical influent of coal chemical industry by ozone catalytic oxidation[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5837-5844. | |
| [35] | ROSAL Roberto, GONZALO María S, Antonio RODRÍGUEZ, et al. Catalytic ozonation of atrazine and linuron on MnO x /Al2O3 and MnO x /SBA-15 in a fixed bed reactor[J]. Chemical Engineering Journal, 2010, 165(3): 806-812. |
| [36] | 金鹏康, 孔茜, 金鑫. 二级出水中溶解性有机物的分级表征特性[J]. 环境化学, 2015, 34(9): 1649-1653. |
| JIN Pengkang, KONG Qian, JIN Xin. Characterization of dissolved organic matter in the secondary effluent of urban waste water treatment plant[J]. Environmental Chemistry, 2015, 34(9): 1649-1653. | |
| [37] | Tobias NÖTHE, FAHLENKAMP Hans, VON SONNTAG Clemens. Ozonation of wastewater: Rate of ozone consumption and hydroxyl radical yield[J]. Environmental Science & Technology, 2009, 43(15): 5990-5995. |
| [38] | TRUBETSKAYA Olga E, RICHARD Claire, PATSAEVA Svetlana V, et al. Evaluation of aliphatic/aromatic compounds and fluorophores in dissolved organic matter of contrasting natural waters by SEC-HPLC with multi-wavelength absorbance and fluorescence detections[J]. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 2020, 238: 118450. |
| [1] | DUAN Xianzhe, BI Wenting, LI Nan, DOU Jiale, SHAO Bingqing, WANG Jiawei, WU Peng, HUANG Huan, TANG Zhenping. Numerical simulation for disposal of high-level radioactive wastes (HLWs): Mechanisms and influencing factors of radionuclide migration [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5391-5405. |
| [2] | LI Shupeng, DU Xueyuan, LI Fei, GUO Lili, LI Guanghe. Research development of reductive materials for remediation of groundwater contaminated by halogenated solvents [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 500-512. |
| [3] | HE Yixue, QIN Xianchao, MA Weifang. Research progress on in situ remediation of halogenated hydrocarbon contamination in groundwater by persulfate-based advanced oxidation process [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4072-4088. |
| [4] | WU Zhongjie, XIE Lianke, WANG Jinghui, HUANG Renliang. Preparation of hierarchical copper hydroxyl nitrate nanozyme for degradation of phenolic pollutants [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 497-505. |
| [5] | JI Dongli, YE Jiliang, HE Shaolin, YUAN Hongying, XU Longtan, LI Ruolin, WANG Shuai, SONG Yang, QI Zhibin, GE Yanbing. Analysis of influence of oil shale in-situ mining on some groundwater index [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4057-4064. |
| [6] | LI Po, ZHANG Shanshan, SHI Jinqiu, GAO Hang, WANG Mingxin. Remediation of aniline-contaminated groundwater by activated persulfate and its environmental risks [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2753-2760. |
| [7] | WEI Tingting, WANG Xiankai, ZHAN Yong, CHEN Sisi, DONG Bin. Enhancement of cell lysis in activated sludge by catalytic ozonation of Mn2+ [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1009-1016. |
| [8] | ZHANG Yongxiang, WANG Jinhao, JING Qi, LI Yajun. Preparation and application of modified nanoscale zero-valent iron (nZVI) in groundwater: a review [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4486-4496. |
| [9] | Lanhe ZHANG, Lin GUO, Jianing LI, Zicheng CHEN, Yanping JIA, Zheng LI, Xiaohui GUAN. Preparation of Fe2O3/modified natural zeolite catalyst and mechanism study on catalytic ozonation of 4-chlorophenol [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3086-3094. |
| [10] | Lichao NENGZI, Jinzhao HU, Xuemei DENG, Jingjiang ZENG, Lin ZHONG, Qianru YU, Dao’ao JIANG. Influence of dissolved oxygen on removal efficiency of ammonia,iron and manganese in biofilter [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2900-2906. |
| [11] | Qi SUN,Guangcan ZHU,Jun WU,Jian LÜ. Catalytic ozonation of metronidazole using nano-Mg(OH)2 withdifferent morphologies [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1174-1180. |
| [12] | Lichao NENGZI, Yunzhu CHEN, Xuemei WANG, Dan KE, Daifang PENG. Influence of temperature on removal efficiency of ammonia, iron and manganese in biological purification biofilter [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5283-5289. |
| [13] | BAI Xiaoxia, YANG Qing, DING Yun, WEI Wei, DING Jie, ZHONG Yingying. Research progress of catalytic ozonation process to treat refractory petrochemical wastewater [J]. Chemical Industry and Engineering Progree, 2016, 35(01): 263-268. |
| [14] | ZHANG Haifeng 1,2,CHAI Huijian1,ZHAO Guilong1,ZHANG Lanhe1,SONG L2. Preparation of catalytic ozonation membrane and analysis of humic acid removal mechanism [J]. Chemical Industry and Engineering Progree, 2014, 33(08): 2199-2205. |
| [15] | ZHU Qiushi1,CHEN Jinfu1,JIANG Haiyang2,GUO Shaohui1,LIU Hongda3. A review of catalytic ozonation:Mechanisms and efficiency [J]. Chemical Industry and Engineering Progree, 2014, 33(04): 1010-1014. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |