Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (9): 5184-5194.DOI: 10.16085/j.issn.1000-6613.2024-1236
• Materials science and technology • Previous Articles
WANG Yanfen1,2(
), AI Jie2, CHENG Xiang1(
), ZHAO Guangming1,3, LI Yingming3, MENG Xiangrui3
Received:2024-07-28
Revised:2024-09-13
Online:2025-09-30
Published:2025-09-25
Contact:
CHENG Xiang
王艳芬1,2(
), 艾洁2, 程详1(
), 赵光明1,3, 李英明3, 孟祥瑞3
通讯作者:
程详
作者简介:王艳芬(1986—),女,副教授,硕士生导师,研究方向为注浆材料。E-mail:wangyanfenyu@163.com。
基金资助:CLC Number:
WANG Yanfen, AI Jie, CHENG Xiang, ZHAO Guangming, LI Yingming, MENG Xiangrui. Mechanical properties and mechanism of PPF reinforced superfine cement-based grouting materials[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5184-5194.
王艳芬, 艾洁, 程详, 赵光明, 李英明, 孟祥瑞. PPF增强超细水泥基注浆材料力学性能与作用机制[J]. 化工进展, 2025, 44(9): 5184-5194.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1236
| 成分 | 质量分数/% |
|---|---|
| MgO | 1.98 |
| Al2O3 | 5.35 |
| SiO2 | 21.13 |
| CaO | 64.4 |
| SO3 | 1.97 |
| R2O | 1.14 |
| Fe2O3 | 4.03 |
| 成分 | 质量分数/% |
|---|---|
| MgO | 1.98 |
| Al2O3 | 5.35 |
| SiO2 | 21.13 |
| CaO | 64.4 |
| SO3 | 1.97 |
| R2O | 1.14 |
| Fe2O3 | 4.03 |
| 物理参数 | 数据 |
|---|---|
| 密度ρ/g·cm-3 | 0.91 |
| 拉伸强度P/MPa | 512 |
| 弹性模量E/MPa | 3922 |
| 熔点MP/℃ | 161 |
| 抗拉极限/% | 15 |
| 物理参数 | 数据 |
|---|---|
| 密度ρ/g·cm-3 | 0.91 |
| 拉伸强度P/MPa | 512 |
| 弹性模量E/MPa | 3922 |
| 熔点MP/℃ | 161 |
| 抗拉极限/% | 15 |
| 样品简称 | 超细硅酸盐水泥/% | 速凝剂/% | 膨胀剂/% | 减水剂/% | PPF/% | PPF长度/mm | 水灰比 |
|---|---|---|---|---|---|---|---|
| S0 | 100 | 8 | 8 | 0.35 | 0 | — | 0.35 |
| S1 | 100 | 8 | 8 | 0.35 | 0.1 | 1~2 | 0.35 |
| S2 | 100 | 8 | 8 | 0.35 | 0.1 | 2~3 | 0.35 |
| S3 | 100 | 8 | 8 | 0.35 | 0.1 | 3~6 | 0.35 |
| 样品简称 | 超细硅酸盐水泥/% | 速凝剂/% | 膨胀剂/% | 减水剂/% | PPF/% | PPF长度/mm | 水灰比 |
|---|---|---|---|---|---|---|---|
| S0 | 100 | 8 | 8 | 0.35 | 0 | — | 0.35 |
| S1 | 100 | 8 | 8 | 0.35 | 0.1 | 1~2 | 0.35 |
| S2 | 100 | 8 | 8 | 0.35 | 0.1 | 2~3 | 0.35 |
| S3 | 100 | 8 | 8 | 0.35 | 0.1 | 3~6 | 0.35 |
| 试样 | Q0~1值 | 相对含量 | 试样 | Q1~2值 | 相对含量 | 试样 | Q2值 | 相对含量 | 试样 | Q2~3值 | 相对含量 | 试样 | Q3值 | 相对含量 | 试样 | Q4值 | 相对含量 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| S0 | 852 | 0.022 | S0 | 906 | 0.034 | S0 | 956 | 0.066 | S0 | 1013 | 0.644 | S0 | 1112 | 0.174 | S0 | 1167 | 0.057 |
| S1 | 854 | 0.024 | S1 | 901 | 0.033 | S1 | 956 | 0.118 | S1 | 1018 | 0.606 | S1 | 1116 | 0.152 | S1 | 1172 | 0.064 |
| S2 | 850 | 0.007 | S2 | — | — | S2 | 962 | 0.027 | S2 | 1004 | 0.785 | S2 | 1115 | 0.121 | S2 | 1170 | 0.059 |
| S3 | 852 | 0.017 | S3 | 901 | 0.032 | S3 | 966 | 0.341 | S3 | 1036 | 0.028 | S3 | 1111 | 0.240 | S3 | 1175 | 0.039 |
| 试样 | Q0~1值 | 相对含量 | 试样 | Q1~2值 | 相对含量 | 试样 | Q2值 | 相对含量 | 试样 | Q2~3值 | 相对含量 | 试样 | Q3值 | 相对含量 | 试样 | Q4值 | 相对含量 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| S0 | 852 | 0.022 | S0 | 906 | 0.034 | S0 | 956 | 0.066 | S0 | 1013 | 0.644 | S0 | 1112 | 0.174 | S0 | 1167 | 0.057 |
| S1 | 854 | 0.024 | S1 | 901 | 0.033 | S1 | 956 | 0.118 | S1 | 1018 | 0.606 | S1 | 1116 | 0.152 | S1 | 1172 | 0.064 |
| S2 | 850 | 0.007 | S2 | — | — | S2 | 962 | 0.027 | S2 | 1004 | 0.785 | S2 | 1115 | 0.121 | S2 | 1170 | 0.059 |
| S3 | 852 | 0.017 | S3 | 901 | 0.032 | S3 | 966 | 0.341 | S3 | 1036 | 0.028 | S3 | 1111 | 0.240 | S3 | 1175 | 0.039 |
| [1] | 管学茂, 李雪峰, 张海波, 等 .深井软岩无机有机复合注浆加固材料研发与应用[J].煤炭科学技术, 2023, 51(8): 1-11. |
| GUAN Xuemao, LI Xuefeng, ZHANG Haibo, et al. Research and application of inorganic and organic composite grouting reinforcement materials in deep weak rock[J]. Coal Science and Technology, 2023, 51(8): 1-11. | |
| [2] | 赵光明, 王艳芬, 艾洁, 等 .矿用水泥基注浆材料的发展及展望[J]. 中国矿业大学学报, 2024, 53(1): 1-22. |
| ZHAO Guangming, WANG Yanfen, AI Jie, et al. Development and prospect of cement-based grouting materials for coal mine[J]. Journal of China University of Mining & Technology, 2024, 53(1): 1-22. | |
| [3] | 单仁亮, 彭杨皓, 孔祥松, 等. 国内外煤巷支护技术研究进展[J]. 岩石力学与工程学报, 2019, 38(12): 2377-2403. |
| SHAN Renliang, PENG Yanghao, KONG Xiangsong, et al. Research progress of coal roadway support technology at home and abroad[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2377-2403. | |
| [4] | 康红普, 王国法, 姜鹏飞, 等. 煤矿千米深井围岩控制及智能开采技术构想[J]. 煤炭学报, 2018, 43(7): 1789-1800. |
| KANG Hongpu, WANG Guofa, JIANG Pengfei, et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1000m[J]. Journal of China Coal Society, 2018, 43(7): 1789-1800. | |
| [5] | YU Weijian, ZHOU Mingjuan, WAN Xing, et al. Experimental study on physical properties of superfine cement grouting material[J]. Frontiers in Materials, 2022, 9: 1056135. |
| [6] | 黄莫霆. 新型无碱速凝剂的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
| HUANG Moting. Study on preparation and properties of a new alkali-free accelerator[D]. Harbin: Harbin Institute of Technology, 2020. | |
| [7] | YOO Doo-Yeol, KIM Soonho, LEE Jin-Young, et al. Implication of calcium sulfoaluminate-based expansive agent on tensile behavior of ultra-high-performance fiber-reinforced concrete[J]. Construction and Building Materials, 2019, 217: 679-693. |
| [8] | ALVAREZ Yorly, PRIETO María Isabel, COBO Alfonso. Mechanical properties of cement mortars reinforced with polypropylene fibers subjected to high temperatures and different cooling regimes[J]. Buildings, 2023, 13(6): 1445. |
| [9] | OGRODNIK Paweł, RUTKOWSKA Gabriela, Aleksandra POWĘZKA, et al. Research on the effect of fire thermal energy on the microstructure and properties mechanical of fiber-reinforced cement mortars[J]. Energies, 2023, 16(18): 6450. |
| [10] | ELKATATNY Salaheldin, GAJBHIYE Rahul, AHMED Anas, et al. Enhancing the cement quality using polypropylene fiber[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(3): 1097-1107. |
| [11] | ZHOU Xianyu, ZENG Yusheng, CHEN Pang, et al. Mechanical properties of basalt and polypropylene fibre-reinforced alkali-activated slag concrete[J]. Construction and Building Materials, 2021, 269: 121284. |
| [12] | 郭荣鑫,郭佳栋,颜峰,等. 聚丙烯纤维轻骨料混凝土力学性能及破坏机理研究[J]. 硅酸盐通报, 2019, 38(5): 1323-1330. |
| GUO Rongxin, GUO Jiadong, YAN Feng, et al. Investigation on mechanical properties and failure mechanism of polypropylene fiber reinforced lightweight aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(5): 1323-1330. | |
| [13] | RANJBAR Navid, MEHRALI Mehdi, BEHNIA Arash, et al. A comprehensive study of the polypropylene fiber reinforced fly ash based geopolymer[J]. Plos One, 2016, 11(1): e0147546. |
| [14] | HANNAWI Kinda, BIAN Hui, William PRINCE-AGBODJAN, et al. Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes[J]. Composites B: Engineering, 2016, 86: 214-220. |
| [15] | HOU Yongqiang, YANG Ke, YIN Shenghua, et al. Enhancing workability, strength, and microstructure of cemented tailings backfill through mineral admixtures and fibers[J]. Journal of Building Engineering, 2024, 84: 108590. |
| [16] | XU Yangchen, CHEN Haiming, WANG Pengju. Effect of polypropylene fiber on properties of alkali-activated slag mortar[J]. Advances in Civil Engineering, 2020, 2020(1): 4752841. |
| [17] | 秦哲焕, 毛建国, 尹道道, 等. 双掺膨胀剂和纤维的混凝土裂缝控制技术及应用研究[J]. 中国建筑防水, 2021(10): 13-17. |
| QIN Zhehuan, MAO Jianguo, YIN Daodao, et al. Research on application and crack control technology of concrete mixed with expansive agent and fiber[J]. China Building Waterproofing, 2021(10): 13-17. | |
| [18] | 杨莉莉. 混杂纤维增强水泥基材料性能研究[D]. 重庆: 西南大学, 2020. |
| YANG Lili. Study on properties of hybrid fiber reinforced cement-based materials[D]. Chongqing: Southwest University, 2020. | |
| [19] | 黄宇劼, 张慧, 高超, 等. 考虑纤维取向特征的超高性能混凝土三维细观断裂[J]. 硅酸盐学报, 2024, 52(2): 555-568. |
| HUANG Yujie, ZHANG Hui, GAO Chao, et al. 3D mesoscale fracture of ultra-high performance concrete with fibre orientation characteristics[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 555-568. | |
| [20] | XIONG Zhe, LI Huawei, PAN Zezhou, et al. Fracture properties and mechanisms of steel fiber and glass fiber reinforced rubberized concrete[J]. Journal of Building Engineering, 2024, 86: 108866. |
| [21] | WANG Cheng, ZHAO Xiao, ZHANG Xiyu, et al. Effects of alkali equivalent and polypropylene fibres on performance of alkali-activated municipal waste incineration bottom ash-slag mortar[J]. Journal of Building Engineering, 2024, 84: 108496. |
| [22] | 施韬, 杨泽平, 郑立炜. 碳纳米管改性水泥基复合材料早龄期水化反应的傅里叶红外光谱[J]. 复合材料学报, 2017, 34(3): 653-660. |
| SHI Tao, YANG Zeping, ZHENG Liwei. FTIR spectra for early age hydration of cement-based composites incorporatted with CNTs[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 653-660. | |
| [23] | Kunal KUPWADE-PATIL, PALKOVIC Steven D, BUMAJDAD Ali, et al. Use of silica fume and natural volcanic ash as a replacement to Portland cement: Micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography[J]. Construction and Building Materials, 2018, 158: 574-590. |
| [24] | 侯永强, 尹升华, 赵国亮, 等. 聚丙烯纤维增强尾砂胶结充填体力学及流动性能研究[J]. 材料导报, 2021, 35(19): 19030-19035. |
| HOU Yongqiang, YIN Shenghua, ZHAO Guoliang, et al. Study on the mechanical and flow properties of polypropylene fiber reinforced cemented tailings backfill[J]. Materials Reports, 2021, 35(19): 19030-19035. | |
| [25] | FAN Qichang, MENG Xue, LI Zhendong, et al. Experiment and molecular dynamics simulation of functionalized cellulose nanocrystals as reinforcement in cement composites[J]. Construction and Building Materials, 2022, 341: 127879. |
| [26] | 王晨宇, 韦经杰, 龙武剑, 等. 纤维取向分布对水泥基复合材料力学性能的影响及其评价方法的研究进展[J]. 材料导报, 2022, 36(15): 52-64. |
| WANG Chenyu, WEI Jingjie, LONG Wujian, et al. Review on the effect of fiber orientation distribution on mechanical performance of cement-based composites and its evaluated methods[J]. Materials Reports, 2022, 36(15): 52-64. | |
| [27] | 陆振乾, 杨雅茹, 荀勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(4): 177-183. |
| LU Zhenqian, YANG Yaru, XUN Yong. Research review of fiber effect on properties of cement-based composite[J]. Journal of Textile Research, 2021, 42(4): 177-183. | |
| [28] | 黄鑫, 庞建勇, 黄金坤, 等. 聚丙烯纤维混凝土强度正交试验研究[J]. 硅酸盐通报, 2019, 38(4): 1183-1190. |
| HUANG Xin, PANG Jianyong, HUANG Jinkun, et al. Orthogonal test study on strength of polypropylene fiber concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 1183-1190. | |
| [29] | LI Jianhao, YANG Liyun, XIE Huanzhen, et al. Experimental investigation on interfacial bonding performance between cluster basalt fiber and cement mortar[J]. Construction and Building Materials, 2024, 411: 134215. |
| [1] | DU Jingjing, JIANG Jun, XU Xinwu, SHAO Lupeng, XU Zhaoyang, MEI Changtong. Effects of different polymerization degrees on the formation, structure and property of polyvinyl alcohol films [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1588-1598. |
| [2] | WAN Kai, YANG Weimin, DING Qisheng, YIN Rongzheng, LI Haoyi, TAN Jing. Graphitization uniformity and mechanical properties of laser irradiated carbon fiber [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1025-1032. |
| [3] | GENG Qianhao, XU Xiaoyun, LI bingjing. Research progress in control technology for reaction heat of polyurethane grouting materials in mines [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 319-328. |
| [4] | ZHANG Hongming, LU Jiongyuan, WANG Sanfan. Research progress on molecular structure of anion exchange membrane for fuel cells [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 318-330. |
| [5] | MA Xingxing, FENG Yakai. Improvement of thermal oxygen aging resistance of silicon gel by adding modified cerium oxide with coupling agent [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 874-880. |
| [6] | YANG Lining, ZHENG Donghao, WANG Lixin, YANG Guang. Bionic design and additive manufacturing of continuous carbon fiber reinforced resin matrix composites with dragonfly wing venation structure [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5961-5967. |
| [7] | JI Zike, BAO Cheng. Research progress of selective CO methanation [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 120-132. |
| [8] | JIANG Xuguang, LONG Ling, ZHAO Xiaoli, KONG Litan. Application of solidified materials in disposal of MSWI fly ash [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 216-225. |
| [9] | Shicheng YANG, Qi SUN, Lunjian CHEN, Yulong ZHANG, Xiaoxiao XUE, Guiyun YI. Effect of modified red mud on microstructure and mechanical properties of butadiene-styrene rubber composites [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3297-3303. |
| [10] | Qingqing HAO, Yonghong SONG, Yonghua ZHAO, Qijian ZHANG, Zhaotie LIU, Zhongwen LIU. Recent advances in cobalt-based catalysts for Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 291-303. |
| [11] | SONG Guangchun, LI Yuxing, WANG Wuchang, JIANG Kai, SHI Zhengzhuo, YAO Shupeng, WEI Ding, SHI Peiyu. Investigation on the mechanical properties of pipe wall hydrate deposits based on particle packing theory [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3370-3378. |
| [12] | ZHOU Wenjun, WANG Xueqin, HE Weizhuang. Properties of flame retarded PC/ABS/polyborosiloxane [J]. Chemical Industry and Engineering Progree, 2016, 35(03): 861-865. |
| [13] | LONG Laishou,ZENG Maohua,PENG Cuihong. Effects of fiberglass recycled from waste printed circuit boards on mechanical properties of polypropylene matrix composites [J]. Chemical Industry and Engineering Progree, 2013, 32(07): 1691-1694. |
| [14] | ZHANG Wenli,LIU Na,DING Suping,FEI Yue,WANG Qi,ZENG Shanghong. Study on catalytic performance of CeO2/CuO catalysts for preferential CO oxidation [J]. Chemical Industry and Engineering Progree, 2011, 30(8): 1744-. |
| [15] | WANG Yan,ZHANG Wenli,WANG Qi,WANG Pengzhan,SU Haiquan,ZENG Shanghong. Research progress of inverse CeO2/CuO catalyst on low-temperature oxidation of CO in H2 rich gas [J]. Chemical Industry and Engineering Progree, 2011, 30(6): 1224-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |