Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (9): 4898-4907.DOI: 10.16085/j.issn.1000-6613.2024-1136
• Chemical processes and equipment • Previous Articles
ZHOU Jinghao1,2(
), ZHANG Chaoyang1, HU Haoxing1,2, WANG Siming1, LIU Jingyuan1,2, WEI Guanghua1(
)
Received:2024-07-17
Revised:2024-12-28
Online:2025-09-30
Published:2025-09-25
Contact:
WEI Guanghua
周敬皓1,2(
), 张朝阳1, 胡昊星1,2, 王思茗1, 刘静远1,2, 魏光华1(
)
通讯作者:
魏光华
作者简介:周敬皓(1999—),男,硕士研究生,研究方向为质子交换膜燃料电池膜电极的数值模拟。E-mail:zhoujinghao922@sjtu.edu.cn。
基金资助:CLC Number:
ZHOU Jinghao, ZHANG Chaoyang, HU Haoxing, WANG Siming, LIU Jingyuan, WEI Guanghua. Numerical analysis of gas transfer in microporous layer of PEMFC based on lattice Boltzmann method[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4898-4907.
周敬皓, 张朝阳, 胡昊星, 王思茗, 刘静远, 魏光华. 基于格子玻尔兹曼方法的PEMFC微孔层气体传质分析[J]. 化工进展, 2025, 44(9): 4898-4907.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1136
| 物理量 | 数值 |
|---|---|
| 碳的密度 | 1.8 |
| PTFE的密度 | 2.2 |
| 铂的密度 | 21.45 |
| 离聚物的密度 | 2.0 |
| 铂载量 | 0.1 |
| CL厚度 | 1390 |
| MPL厚度 | 2080 |
| 物理量 | 数值 |
|---|---|
| 碳的密度 | 1.8 |
| PTFE的密度 | 2.2 |
| 铂的密度 | 21.45 |
| 离聚物的密度 | 2.0 |
| 铂载量 | 0.1 |
| CL厚度 | 1390 |
| MPL厚度 | 2080 |
| 孔隙率 | PTFE质量分数 | 碳球半径 | 碳球种子占比 |
|---|---|---|---|
| 60% | 30% | 15~25nm | 30% |
| 孔隙率 | PTFE质量分数 | 碳球半径 | 碳球种子占比 |
|---|---|---|---|
| 60% | 30% | 15~25nm | 30% |
| 孔隙率 | 铂与碳的质量比 | 离聚物与碳的质量比 | 碳球半径 |
|---|---|---|---|
| 35% | 1.0 | 0.6 | 15~25nm |
| 孔隙率 | 铂与碳的质量比 | 离聚物与碳的质量比 | 碳球半径 |
|---|---|---|---|
| 35% | 1.0 | 0.6 | 15~25nm |
| 物理量 | 数值 |
|---|---|
| 温度 | 353 |
| 压力 | |
| 交换电流密度 | 0.015 |
| 参考氧气浓度 | 40.96 |
| 阴极传递系数 | 0.6 |
| 过电位 | -0.6 |
| 入口氧气浓度 | 10 |
| 入口相对湿度 | 80% |
| 物理量 | 数值 |
|---|---|
| 温度 | 353 |
| 压力 | |
| 交换电流密度 | 0.015 |
| 参考氧气浓度 | 40.96 |
| 阴极传递系数 | 0.6 |
| 过电位 | -0.6 |
| 入口氧气浓度 | 10 |
| 入口相对湿度 | 80% |
| 测试方法 | 数据来源 | 测试参数 | 测试结果 |
|---|---|---|---|
| Bruggeman测试 | 本文 | 0.3323 | |
| Bruggeman测试 | Bruggeman等[ | 0.3288 | |
| Bruggeman测试 | Hou等[ | 0.3312 | |
| MPL有效扩散率测试 | 本文 | ||
| MPL有效扩散率测试 | Chan等[ |
| 测试方法 | 数据来源 | 测试参数 | 测试结果 |
|---|---|---|---|
| Bruggeman测试 | 本文 | 0.3323 | |
| Bruggeman测试 | Bruggeman等[ | 0.3288 | |
| Bruggeman测试 | Hou等[ | 0.3312 | |
| MPL有效扩散率测试 | 本文 | ||
| MPL有效扩散率测试 | Chan等[ |
| [1] | 中国氢能联盟. 中国氢能源及燃料电池产业白皮书[R]. 北京: 人民日报出版社, 2020.China Hydrogen Alliance. White paper of hydration energy and fuel cell industry in China[R]. Beijing: People’s Daily Press, 2020. |
| [2] | 中华人民共和国中央人民政府. 关于开展燃料电池汽车示范应用的通知[EB/OL]. (2020-09-16) [2024-01-05]. . |
| The State Council of the People’s Republic of China. Notice on demonstration application of fuel cell vehicles[EB/OL]. (2020-09-16) [2024-01-05]. . | |
| [3] | 章俊良, 程明, 罗夏爽, 等. 车用燃料电池电堆关键技术研究现状[J]. 汽车安全与节能学报, 2022, 13(1): 1-28. |
| ZHANG Junliang, CHENG Ming, LUO Xiashuang, et al. Current status of the research on key technologies of vehicle fuel cell stack[J]. Journal of Automotive Safety and Energy, 2022, 13(1): 1-28. | |
| [4] | 程晓静, 沈水云, 王超, 等. 质子交换膜燃料电池超低铂化过程中物质传输的分析与展望[J]. 科学通报, 2021, 66(33): 4240-4255. |
| CHENG Xiaojing, SHEN Shuiyun, WANG Chao, et al. Analysis and outlook of mass transport in ultralow Pt loading proton exchange membrane fuel cells[J]. Chinese Science Bulletin, 2021, 66(33): 4240-4255. | |
| [5] | 侯健, 杨铮, 贺婷, 等. 质子交换膜燃料电池热管理问题的研究进展[J]. 中南大学学报(自然科学版), 2021, 52(1): 19-30. |
| HOU Jian, YANG Zheng, HE Ting, et al. Research progress on thermal management of proton exchange membrane fuel cells[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 19-30. | |
| [6] | 李子坤, 颜聿聪. 燃料电池气体扩散层中微孔层用炭材料研究进展[J]. 炭素技术, 2022, 41(6): 1-4, 61. |
| LI Zikun, YAN Yucong. Research progress on the carbon materials for micropore layers in gas diffusion layers for PEMFC[J]. Carbon Techniques, 2022, 41(6): 1-4, 61. | |
| [7] | 李超明, 康敬欣, 刘勇. 质子交换膜燃料电池微孔层研究进展[J]. 化工新型材料, 2020, 48(9): 256-259. |
| LI Chaoming, KANG Jingxin, LIU Yong. Research progress on MPL of proton exchange membrane fuel cell[J]. New Chemical Materials, 2020, 48(9): 256-259. | |
| [8] | WATANABE M, TOMIKAWA M, MOTOO S. Preparation of a high performance gas diffusion electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 182(1): 193-196. |
| [9] | QI Zhigang, KAUFMAN Arthur. Improvement of water management by a microporous sublayer for PEM fuel cells[J]. Journal of Power Sources, 2002, 109(1): 38-46. |
| [10] | Jaebong SIM, KANG Minsoo, MIN Kyoungdoug. Effects of basic gas diffusion layer components on PEMFC performance with capillary pressure gradient[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27731-27748. |
| [11] | CHAN Carl, ZAMEL Nada, LI Xianguo, et al. Experimental measurement of effective diffusion coefficient of gas diffusion layer/microporous layer in PEM fuel cells[J]. Electrochimica Acta, 2012, 65: 13-21. |
| [12] | ZHANG Xiaoxian, GAO Yuan, OSTADI Hossein, et al. Modelling water intrusion and oxygen diffusion in a reconstructed microporous layer of PEM fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(30): 17222-17230. |
| [13] | MOLAEIMANESH Gholam Reza. LBM simulations of PEM fuel cells[M]//Lattice Boltzmann Modeling for Chemical Engineering. Amsterdam: Elsevier, 2020: 143-217. |
| [14] | CHEN Li, WU Gang, HOLBY Edward F, et al. Lattice Boltzmann pore-scale investigation of coupled physical-electrochemical processes in C/Pt and non-precious metal cathode catalyst layers in proton exchange membrane fuel cells[J]. Electrochimica Acta, 2015, 158: 175-186. |
| [15] | CHENG Xiaojing, ZHOU Jinghao, LUO Liuxuan, et al. Boosting bulk oxygen transport with accessible electrode nanostructure in low Pt loading PEMFCs[J]. Small, 2024, 20(26): 2308563. |
| [16] | HOU Yuze, DENG Hao, PAN Fengwen, et al. Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell[J]. Applied Energy, 2019, 253: 113561. |
| [17] | WANG Yulin, QIN Shiwei, LIAO Xiangling, et al. Lattice Boltzmann study of the effect of catalyst layer structure on oxygen reduction reaction within a PEMFC[J]. International Journal of Hydrogen Energy, 2024, 52: 1105-1114. |
| [18] | HANNACH Mohamed EL, SINGH Randhir, DJILALI Ned, et al. Micro-porous layer stochastic reconstruction and transport parameter determination[J]. Journal of Power Sources, 2015, 282: 58-64. |
| [19] | 何璞, 母玉同, 陈黎, 等. 质子交换膜燃料电池多孔电极有效输运系数预测[J]. 工程热物理学报, 2019, 40(1): 125-129. |
| HE Pu, MU Yutong, CHEN Li, et al. Predictions of effective transport coefficients for porous electrode in proton exchange membrane fuel cell[J]. Journal of Engineering Thermophysics, 2019, 40(1): 125-129. | |
| [20] | ZHANG Heng, SHAO Xuanyu, ZHAN Zhigang, et al. Pore-scale modeling of microporous layer for proton exchange membrane fuel cell: Effective transport properties[J]. Membranes, 2023, 13(2): 219. |
| [21] | NANJUNDAPPA Abhishek, ALAVIJEH Alireza Sadeghi, HANNACH Mohamed EL, et al. A customized framework for 3-D morphological characterization of microporous layers[J]. Electrochimica Acta, 2013, 110: 349-357. |
| [22] | LANGE Kyle J, SUI Pang-Chieh, DJILALI Ned. Pore scale simulation of transport and electrochemical reactions in reconstructed PEMFC catalyst layers[J]. Journal of the Electrochemical Society, 2010, 157(10): B1434. |
| [23] | ZAMEL Nada, Jürgen BECKER, WIEGMANN Andreas. Estimating the thermal conductivity and diffusion coefficient of the microporous layer of polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2012, 207: 70-80. |
| [24] | W-G POLLARD, R-D PRESENT. On gaseous self-diffusion in long capillary tubes[J]. Physical Review, 1948, 73(7): 762-774. |
| [25] | LANGE Kyle J, SUI Pang-Chieh, DJILALI Ned. Pore scale modeling of a proton exchange membrane fuel cell catalyst layer: Effects of water vapor and temperature[J]. Journal of Power Sources, 2011, 196(6): 3195-3203. |
| [26] | SPRINGER T E, ZAWODZINSKI T A, GOTTESFELD S. Polymer electrolyte fuel cell model[J]. Journal of the Electrochemical Society, 1991, 138(8): 2334-2342. |
| [27] | MOTUPALLY Sathya, BECKER Aaron J, WEIDNER John W. Diffusion of water in nafion 115 membranes[J]. Journal of the Electrochemical Society, 2000, 147(9): 3171. |
| [28] | WANG Guoqing, MUKHERJEE Partha P, WANG Chaoyang. Direct numerical simulation (DNS) modeling of PEFC electrodes Part Ⅱ. Random microstructure[J]. Electrochimica Acta, 2006, 51(15): 3151-3160. |
| [29] | LEE Kunchan, ISHIHARA Akimitsu, MITSUSHIMA Shigenori, et al. Effect of recast temperature on diffusion and dissolution of oxygen and morphological properties in recast nafion[J]. Journal of the Electrochemical Society, 2004, 151(4): A639. |
| [30] | BRUGGEMAN D A G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ⅰ. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen[J]. Annalen Der Physik, 1935, 416(8): 665-679. |
| [31] | TJADEN Bernhard, COOPER Samuel J, BRETT Daniel JL, et al. On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems[J]. Current Opinion in Chemical Engineering, 2016, 12: 44-51. |
| [32] | JORDAN L R, SHUKLA A K, BEHRSING T, et al. Diffusion layer parameters influencing optimal fuel cell performance[J]. Journal of Power Sources, 2000, 86(1/2): 250-254. |
| [33] | LAMANNA Jacob M, KANDLIKAR Satish G. Determination of effective water vapor diffusion coefficient in pemfc gas diffusion layers[J]. International Journal of Hydrogen Energy, 2011, 36(8): 5021-5029. |
| [1] | HUANG Ke’er, LIU Jiahao, LI Haoming, ZHOU Tianhang, GAO Jinsen, LAN Xingying. Self-diffusion coefficients in the process of carbon capture by amine solvents based on molecular dynamics simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4352-4364. |
| [2] | LI Ka, XIA Yuxuan, WU Xiaoqin, YI Lan, LUO Hao. Pore scale computational fluid dynamics (CFD) simulation of a double-layer porous medium combustion reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4381-4393. |
| [3] | DAI Guilong, WANG Xiaoyu, HUANGFU Jiangfei, GONG Lingzhu. Convection heat transfer characteristics of pore-scale Laguerre Voronoi open-cell foam [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4394-4407. |
| [4] | LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442. |
| [5] | WANG Zhaolin, ZHANG Zhigang, ZHOU Jing, GAO Chen, PENG Kechen, JIANG Mindi, XI Xi, XU Shengli, LIU Hong. Flow and heat transfer characteristics based on Gyroid triply periodic minimal surface heat exchange components [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4454-4462. |
| [6] | ZHANG Jianwei, YIN Miaomiao, DONG Xin, FENG Ying. Numerical simulation of mixing characteristics in an impinging stream reactor based on oscillating jets [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4488-4499. |
| [7] | WANG Yabin, ZHAO Bidan, XU Fan, LAN Bin, WANG Junwu. Full-loop simulation of gas-solid flow in CFB unit using mesoscience-based structural model [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4500-4512. |
| [8] | WANG Lanxin, LI Fei, QIAN Yanan, TIAN Yujie, SHEN Jun, WANG Wei. Numerical simulation of coal pyrolysis with different moisture content in fixed-bed reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4513-4525. |
| [9] | AN Shu, MA Yongli, FENG Lei, ZHANG Zihao, LIU Mingyan. CFD simulation of process of water-based foaming through net foam generator [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4545-4555. |
| [10] | TANG Jian, CUI Wangwang, CHEN Jiakun, WANG Tianzheng, QIAO Junfei. Full lifecycle prediction model construction for dioxins in municipal solid waste incineration process: Method of coupling numerical simulation and fuzzy forest regression [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4628-4647. |
| [11] | ZHAI Yuhang, CONG Lixin, HAN Bing, WANG Qilin, ZOU Huichuan. Formation mechanism of large-scale hydrogen cloud deflagration pressure waves and determination of disaster effects [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4709-4719. |
| [12] | CHEN Sheng, LIU Zhongwei, LYU Rongrong, MIAO Chao, ZHOU Siya, JIANG Jingjing, CHEN Rui, HUANG Ganghua, HE Meng, ZHU Liyun. Simulation of multi-field interactive damage caused by acid gas condensation erosion in high-sulfur natural gas desulfurization purification units [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4754-4771. |
| [13] | LONG Huilong, TANG Haoran, MA Yuan, QIN Yunfeng, BAO Yihui, ZHANG Zengfu. Numerical calculation method of typical hydrate phase diagram [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4871-4878. |
| [14] | YANG Xinliu, LIU Qiang, CAO Qian, CUI Yueming, FANG Chaohe. Effect of reservoir seepage on heat transfer performance of a single-well downhole coaxial geothermal heat exchanger [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3860-3868. |
| [15] | ZHANG Ruochen, WANG Jiarui, WANG Simin, ZHANG Zaoxiao. Dynamic collision behavior and energy dissipation mechanism of micron wet particles [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3718-3726. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |