Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4536-4544.DOI: 10.16085/j.issn.1000-6613.2025-0201
• Reactors and process equipment modeling and simulation • Previous Articles
ZHAO Yongming(
), BU Yifeng, WANG Tao, DU Bing, MEN Zhuowu(
)
Received:2025-02-13
Revised:2025-04-12
Online:2025-09-08
Published:2025-08-25
Contact:
MEN Zhuowu
通讯作者:
门卓武
作者简介:赵用明(1991—),男,硕士,工程师,研究方向为费托合成反应器及工艺技术。E-mail:20029710@ceic.com。
基金资助:CLC Number:
ZHAO Yongming, BU Yifeng, WANG Tao, DU Bing, MEN Zhuowu. Integrated optimization of catalyst dynamic replacement and steady-state Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4536-4544.
赵用明, 卜亿峰, 王涛, 杜冰, 门卓武. 费托合成催化剂动态置换与稳态工艺的集成优化[J]. 化工进展, 2025, 44(8): 4536-4544.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0201
| 动力学参数 | 数值 |
|---|---|
| k | 0.062 |
| EFT/kJ∙mol-1 | 105 |
| αFT | 5.9 |
| βFT | 5.9 |
| k | 0.048 |
| EWGS/kJ∙mol-1 | 125 |
| αWGS | 2 |
| βWGS | 2 |
| 动力学参数 | 数值 |
|---|---|
| k | 0.062 |
| EFT/kJ∙mol-1 | 105 |
| αFT | 5.9 |
| βFT | 5.9 |
| k | 0.048 |
| EWGS/kJ∙mol-1 | 125 |
| αWGS | 2 |
| βWGS | 2 |
| 集总产物 | 碳数 | 集总数 | 链增长因子 | 烯烷比 |
|---|---|---|---|---|
| CH4 | 1 | 1 | 0.827 | — |
| C2H4 | 2 | 1 | 0.915 | 0.185 |
| C2H6 | 2 | 1 | ||
| C3H6 | 3 | 1 | 0.890 | 1.920 |
| C3H8 | 3 | 1 | ||
| 1-C4H8 | 4 | 1 | 0.930 | 1.894 |
| n-C4H10 | 4 | 1 | ||
| 1-C8H16 | 8 | 7 | 0.937 | 1.500 |
| n-C8H18 | 8 | 7 | ||
| 1-C16H32 | 16 | 9 | 0.934 | 0.232 |
| n-C16H34 | 16 | 9 | ||
| n-C42H86 | 42 | 61 | 0.928 | — |
| 集总产物 | 碳数 | 集总数 | 链增长因子 | 烯烷比 |
|---|---|---|---|---|
| CH4 | 1 | 1 | 0.827 | — |
| C2H4 | 2 | 1 | 0.915 | 0.185 |
| C2H6 | 2 | 1 | ||
| C3H6 | 3 | 1 | 0.890 | 1.920 |
| C3H8 | 3 | 1 | ||
| 1-C4H8 | 4 | 1 | 0.930 | 1.894 |
| n-C4H10 | 4 | 1 | ||
| 1-C8H16 | 8 | 7 | 0.937 | 1.500 |
| n-C8H18 | 8 | 7 | ||
| 1-C16H32 | 16 | 9 | 0.934 | 0.232 |
| n-C16H34 | 16 | 9 | ||
| n-C42H86 | 42 | 61 | 0.928 | — |
| 模型参数 | 式(15) | 式(16)-C1 | 式(16)-C2 | 式(16)-C3 | 式(16)-C4 | 式(16)-C5 |
|---|---|---|---|---|---|---|
| a1 | 2.49 | 1.008 | 1.027 | 1.059 | 13.66 | 1.01 |
| b1 | 1481 | 216.1 | -130.2 | -547.8 | -133200 | 39.94 |
| c1 | 557.7 | 1706 | 2425 | 3205 | 82630 | 2384 |
| a2 | 0.2314 | 0.079 | 0.087 | 0.096 | 0.0135 | 0.081 |
| b2 | 870 | 868.1 | 903.5 | 910.1 | 1541 | 934.4 |
| c2 | 29.92 | 266.7 | 432.3 | 482.2 | 116.3 | 389.6 |
| a3 | 0.4626 | 0.339 | 0.267 | 0.174 | 0.011 | 0.226 |
| b3 | 734.4 | 1837 | 1810 | 1714 | 899.1 | 1756 |
| c3 | 241.1 | 497.6 | 458 | 331.1 | 336.7 | 388.5 |
| a4 | 1.064 | |||||
| b4 | 237.3 | |||||
| c4 | 442.6 |
| 模型参数 | 式(15) | 式(16)-C1 | 式(16)-C2 | 式(16)-C3 | 式(16)-C4 | 式(16)-C5 |
|---|---|---|---|---|---|---|
| a1 | 2.49 | 1.008 | 1.027 | 1.059 | 13.66 | 1.01 |
| b1 | 1481 | 216.1 | -130.2 | -547.8 | -133200 | 39.94 |
| c1 | 557.7 | 1706 | 2425 | 3205 | 82630 | 2384 |
| a2 | 0.2314 | 0.079 | 0.087 | 0.096 | 0.0135 | 0.081 |
| b2 | 870 | 868.1 | 903.5 | 910.1 | 1541 | 934.4 |
| c2 | 29.92 | 266.7 | 432.3 | 482.2 | 116.3 | 389.6 |
| a3 | 0.4626 | 0.339 | 0.267 | 0.174 | 0.011 | 0.226 |
| b3 | 734.4 | 1837 | 1810 | 1714 | 899.1 | 1756 |
| c3 | 241.1 | 497.6 | 458 | 331.1 | 336.7 | 388.5 |
| a4 | 1.064 | |||||
| b4 | 237.3 | |||||
| c4 | 442.6 |
| 工艺参数 | 数值 |
|---|---|
| 新鲜合成气流量(标准状况)/km3∙h-1 | 550 |
| 催化剂装填量/t | 110 |
| 反应温度/℃ | 270 |
| 反应压力/MPa | 2.85 |
| 新鲜合成气n(H2)/n(CO) | 1.65 |
| 循环比 | 2.80 |
| CO2脱除比例 | 0.99 |
| 工艺参数 | 数值 |
|---|---|
| 新鲜合成气流量(标准状况)/km3∙h-1 | 550 |
| 催化剂装填量/t | 110 |
| 反应温度/℃ | 270 |
| 反应压力/MPa | 2.85 |
| 新鲜合成气n(H2)/n(CO) | 1.65 |
| 循环比 | 2.80 |
| CO2脱除比例 | 0.99 |
| 工艺参数 | 数值 |
|---|---|
| CO转化率/% | 97.99 |
| CO2选择性/% | 15.96 |
| CH4选择性/% | 2.41 |
| 81.22 | |
| 5389 |
| 工艺参数 | 数值 |
|---|---|
| CO转化率/% | 97.99 |
| CO2选择性/% | 15.96 |
| CH4选择性/% | 2.41 |
| 81.22 | |
| 5389 |
| 置换间隔/h | 置换比例/% | 全年催化剂消耗/t | ||
|---|---|---|---|---|
| 48 | 9 | 5395 | 2.02 | 1616 |
| 60 | 11 | 5399 | 1.98 | 1584 |
| 72 | 13 | 5400 | 1.95 | 1560 |
| 84 | 15 | 5400 | 1.93 | 1544 |
| 96 | 17 | 5399 | 1.91 | 1528 |
| 108 | 19 | 5398 | 1.90 | 1520 |
| 置换间隔/h | 置换比例/% | 全年催化剂消耗/t | ||
|---|---|---|---|---|
| 48 | 9 | 5395 | 2.02 | 1616 |
| 60 | 11 | 5399 | 1.98 | 1584 |
| 72 | 13 | 5400 | 1.95 | 1560 |
| 84 | 15 | 5400 | 1.93 | 1544 |
| 96 | 17 | 5399 | 1.91 | 1528 |
| 108 | 19 | 5398 | 1.90 | 1520 |
| 置换间隔/h | 置换比例/% | ||
|---|---|---|---|
| 60 | 8 | 1.48 | 5531 |
| 72 | 10 | 1.52 | 5508 |
| 84 | 12 | 1.57 | 5491 |
| 96 | 13 | 1.49 | 5511 |
| 108 | 15 | 1.53 | 5496 |
| 120 | 17 | 1.55 | 5483 |
| 132 | 18 | 1.50 | 5496 |
| 144 | 20 | 1.52 | 5484 |
| 置换间隔/h | 置换比例/% | ||
|---|---|---|---|
| 60 | 8 | 1.48 | 5531 |
| 72 | 10 | 1.52 | 5508 |
| 84 | 12 | 1.57 | 5491 |
| 96 | 13 | 1.49 | 5511 |
| 108 | 15 | 1.53 | 5496 |
| 120 | 17 | 1.55 | 5483 |
| 132 | 18 | 1.50 | 5496 |
| 144 | 20 | 1.52 | 5484 |
| 价格参数 | 数值 |
|---|---|
| 石脑油价格/CNY∙t-1 | 7000 |
| 柴油价格/CNY∙t-1 | 7000 |
| LPG价格/CNY∙t-1 | 5000 |
| 石脑油消费税/CNY∙t-1 | 2100 |
| 柴油消费税/CNY∙t-1 | 1000 |
| 合成气成本/CNY∙m-3 | 0.5 |
| 催化剂成本/CNY∙t-1 | 150000 |
| 单次活化成本/CNY∙次-1 | 300000 |
| 废催化剂处理成本/CNY∙t-1 | 10000 |
| 价格参数 | 数值 |
|---|---|
| 石脑油价格/CNY∙t-1 | 7000 |
| 柴油价格/CNY∙t-1 | 7000 |
| LPG价格/CNY∙t-1 | 5000 |
| 石脑油消费税/CNY∙t-1 | 2100 |
| 柴油消费税/CNY∙t-1 | 1000 |
| 合成气成本/CNY∙m-3 | 0.5 |
| 催化剂成本/CNY∙t-1 | 150000 |
| 单次活化成本/CNY∙次-1 | 300000 |
| 废催化剂处理成本/CNY∙t-1 | 10000 |
| [1] | 武鹏, 吕元, 郭中山, 等. 煤间接液化及产品加工成套技术开发研究进展[J]. 煤炭学报, 2020, 45(4): 1222-1243. |
| WU Peng, Yuan LYU, GUO Zhongshan, et al. R&D progress of indirect coal liquefaction and product processing integrated technology[J]. Journal of China Coal Society, 2020, 45(4): 1222-1243. | |
| [2] | 孙启文, 吴建民, 张宗森, 等. 煤间接液化技术及其研究进展[J]. 化工进展, 2013, 32(1): 1-12. |
| SUN Qiwen, WU Jianmin, ZHANG Zongsen, et al. Indirect coal liquefaction technology and its research progress[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 1-12. | |
| [3] | 张雅琳, 张占全, 王燕, 等. 费托合成油和石油基油加工产品对比分析[J]. 化工进展, 2018, 37(10): 3781-3787. |
| ZHANG Yalin, ZHANG Zhanquan, WANG Yan, et al. Comparative analysis of products from Fischer-Tropsch oil and petroleum based oil[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3781-3787. | |
| [4] | 相宏伟, 杨勇, 李永旺. 煤炭间接液化: 从基础到工业化[J]. 中国科学: 化学, 2014, 44(12): 1876-1892. |
| XIANG Hongwei, YANG Yong, LI Yongwang. Indirect coal-to-liquids technology: From fundamental research to commercialization[J]. Scientia Sinica Chimica, 2014, 44(12): 1876-1892. | |
| [5] | LI Chufu, LI Yonglong, XU Ming, et al. Studies on pathways to carbon neutrality for indirect coal liquefaction in China[J]. Clean Energy, 2021, 5(4): 644-654. |
| [6] | 陈文迪, 吕德义, 郭中山, 等. 费托合成Fe基催化剂失活研究进展[J]. 工业催化, 2019, 27(6) :9-15. |
| CHEN Wendi, Deyi LYU, GUO Zhongshan, et al. Developments on deactivation of Fe-based Fischer-Tropsch synthesis catalysts[J]. Industrial Catalysis, 2019, 27(6): 9-15. | |
| [7] | SEHABIAGUE Laurent, LEMOINE Romain, BEHKISH Arsam, et al. Modeling and optimization of a large-scale slurry bubble column reactor for producing 10000bbl/d of Fischer-Tropsch liquid hydrocarbons[J]. Journal of the Chinese Institute of Chemical Engineers, 2008, 39(2): 169-179. |
| [8] | SEHABIAGUE Laurent, BASHA Omar M, HONG Yemin, et al. Assessing the performance of an industrial SBCR for Fischer-Tropsch synthesis: Experimental and modeling[J]. AIChE Journal, 2015, 61(11): 3838-3857. |
| [9] | 王峰, 许明, 刘虎, 等. 工业费托合成浆态床反应器的模拟[J]. 化学反应工程与工艺, 2018, 34(3): 213-219, 234. |
| WANG Feng, XU Ming, LIU Hu, et al. Simulation of industrial Fischer-Tropsch synthesis slurry bed reactors[J]. Chemical Reaction Engineering and Technology, 2018, 34(3): 213-219, 234. | |
| [10] | LI Chufu. Modeling and optimization of industrial Fischer-Tropsch synthesis with the slurry bubble column reactor and iron-based catalyst[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 1102-1109. |
| [11] | 郭中山, 赵用明, 卜亿峰, 等. 工业费托浆态床反应器扩能模拟与优化[J]. 天然气化工—C1化学与化工, 2022, 47(3): 101-108. |
| GUO Zhongshan, ZHAO Yongming, BU Yifeng, et al. Simulation and optimization for production capacity expansion of industrial Fischer-Tropsch synthesis slurry reactor[J]. Natural Gas Chemical Industry, 2022, 47(3): 101-108. | |
| [12] | GHASEMI Samira, SOHRABI Morteza, RAHMANI Mohammad. A model for the dynamic behavior of a commercial scale slurry bubble column reactor applied for the Fischer-Tropch synthesis[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2): 337-345. |
| [13] | FAN Wei, HAO Xu, XU Yuanyuan, et al. Simulation of catalyst online replacement for Fischer-Tropsch synthesis in slurry bubble column reactor[J]. Chemistry and Technology of Fuels and Oils, 2011, 47(2): 116-133. |
| [14] | 杨加义, 赵用明, 王峰, 等. 费-托合成催化剂CNFT-1的工业试验[J]. 石油炼制与化工, 2021, 52(4): 27-32. |
| YANG Jiayi, ZHAO Yongming, WANG Feng, et al. Commercial test of Fischer-Tropsch synthesis catalyst CNFT-1[J]. Petroleum Processing and Petrochemicals, 2021, 52(4): 27-32. | |
| [15] | 林泉, 卜亿峰, 孟祥堃, 等. CNFT-1催化剂的开发及工业应用[J]. 中国煤炭, 2021, 47(12): 57-65. |
| LIN Quan, BU Yifeng, MENG Xiangkun, et al. Development and industrial application of CNFT-1 catalyst[J]. China Coal, 2021, 47(12): 57-65. | |
| [16] | SEHABIAGUE Laurent, MORSI Badie I. Hydrodynamic and mass transfer characteristics in a large-scale slurry bubble column reactor for gas mixtures in actual Fischer Tropsch cuts[J]. International Journal of Chemical Reactor Engineering, 2013, 11(1): 83-102. |
| [17] | 孙启文. 煤炭间接液化[M]. 北京: 化学工业出版社, 2012, 55-80. |
| SUN Qiwen. Indirect liquefaction of coal[M]. Beijing: Chemical Industry Press, 2012, 55-80. | |
| [18] | SHI Buchang, DAVIS Burtron H. Fischer Tropsch synthesis: Accounting for chain-length related phenomena[J]. Applied Catalysis A: General, 2004, 277(1/2): 61-69. |
| [19] | 李为真. 费托合成催化剂失活动力学模型的研究进展[J]. 化工进展, 2019, 38(5): 2347-2352. |
| LI Weizhen. Progress on the catalyst deactivation model for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2347-2352. |
| [1] | LIU Yanyan, LI Feiquan, LIU Dong, WANG Juntao, LUO Xue. Molecular simulation study on the interfacial properties of recycled asphalt-aggregate at the nanoscale [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4302-4310. |
| [2] | WANG Xiaoxiao, KONG Fulin, LI Xiaoyu, REN Yongqiang, XU Shisen. Numerical simulation of CO2 absorbents microscale flow on the surface of structured packings in the presence of perforations [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4311-4321. |
| [3] | LI Yanping, YANG Tao, WANG Hongxun, ZHANG Cheng, WEN Guosheng, HAN Zhicheng, LAN Gongjia, YAN Dazhou. Reaction molecular dynamics simulation of the thermal decomposition and reduction system of trichlorosilane in a hydrogen atmosphere [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4322-4330. |
| [4] | LIU Lihan, WANG Qijun, WANG Xuan, PENG Yangfeng, XU Xiaofei. All-atom molecular dynamics simulation on stress softening of styrene-butadiene rubber [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4331-4340. |
| [5] | QI Yan, CHANG Hao, ZHANG Lei. Structural product formulation design method based on molecular dynamics simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4341-4351. |
| [6] | HUANG Ke’er, LIU Jiahao, LI Haoming, ZHOU Tianhang, GAO Jinsen, LAN Xingying. Self-diffusion coefficients in the process of carbon capture by amine solvents based on molecular dynamics simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4352-4364. |
| [7] | WU Bo, MA Linxuan, ZHANG Mingfeng, CAO Lijuan, ZHOU Lei, WANG Xuezhong. Prediction of hydrotalcite particle size distribution based on machine learning ultrasonic attenuation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4365-4374. |
| [8] | LI Ka, XIA Yuxuan, WU Xiaoqin, YI Lan, LUO Hao. Pore scale computational fluid dynamics (CFD) simulation of a double-layer porous medium combustion reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4381-4393. |
| [9] | DAI Guilong, WANG Xiaoyu, HUANGFU Jiangfei, GONG Lingzhu. Convection heat transfer characteristics of pore-scale Laguerre Voronoi open-cell foam [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4394-4407. |
| [10] | LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442. |
| [11] | WANG Zhaolin, ZHANG Zhigang, ZHOU Jing, GAO Chen, PENG Kechen, JIANG Mindi, XI Xi, XU Shengli, LIU Hong. Flow and heat transfer characteristics based on Gyroid triply periodic minimal surface heat exchange components [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4454-4462. |
| [12] | HU Jiazhi, JIANG Xinyu, LI Fan, LI Zhihui. Surface catalytic reaction model of the near-space vehicle reentry DSMC method [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4478-4487. |
| [13] | ZHANG Jianwei, YIN Miaomiao, DONG Xin, FENG Ying. Numerical simulation of mixing characteristics in an impinging stream reactor based on oscillating jets [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4488-4499. |
| [14] | WANG Yabin, ZHAO Bidan, XU Fan, LAN Bin, WANG Junwu. Full-loop simulation of gas-solid flow in CFB unit using mesoscience-based structural model [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4500-4512. |
| [15] | WANG Lanxin, LI Fei, QIAN Yanan, TIAN Yujie, SHEN Jun, WANG Wei. Numerical simulation of coal pyrolysis with different moisture content in fixed-bed reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4513-4525. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |