Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4513-4525.DOI: 10.16085/j.issn.1000-6613.2025-0153
• Reactors and process equipment modeling and simulation • Previous Articles
WANG Lanxin1,2(
), LI Fei2,3(
), QIAN Yanan4, TIAN Yujie2(
), SHEN Jun1, WANG Wei2,3
Received:2025-02-07
Revised:2025-05-12
Online:2025-09-08
Published:2025-08-25
Contact:
LI Fei, TIAN Yujie
王蓝欣1,2(
), 李飞2,3(
), 钱亚男4, 田于杰2(
), 申峻1, 王维2,3
通讯作者:
李飞,田于杰
作者简介:王蓝欣(2000—),女,硕士研究生,研究方向为煤热解过程仿真。E-mail:lxwang@ipe.ac.cn。
基金资助:CLC Number:
WANG Lanxin, LI Fei, QIAN Yanan, TIAN Yujie, SHEN Jun, WANG Wei. Numerical simulation of coal pyrolysis with different moisture content in fixed-bed reactor[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4513-4525.
王蓝欣, 李飞, 钱亚男, 田于杰, 申峻, 王维. 固定床反应器不同水分煤热解数值模拟[J]. 化工进展, 2025, 44(8): 4513-4525.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0153
| 反应器构体 | 尺寸/mm |
|---|---|
| 反应器总高 | 250 |
| 反应器筒体直径 | 100 |
| 出口直径 | 32 |
| 出口高度 | 35 |
| 锥体高度 | 65 |
| 反应器构体 | 尺寸/mm |
|---|---|
| 反应器总高 | 250 |
| 反应器筒体直径 | 100 |
| 出口直径 | 32 |
| 出口高度 | 35 |
| 锥体高度 | 65 |
| 参数 | 数值 |
|---|---|
| 颗粒粒径/mm | 2 |
| 初始温度/K | 300 |
| 初始空隙率 | 0.4 |
| 煤层高度/mm | 150 |
| 加热壁面温度/K | 1173 |
| 其他壁面温度 | 绝热 |
| 出口 | 压力出口 |
| 动量、能量及DO辐射方程离散 | 二阶迎风差分格式 |
| 质量守恒方程离散 | QUICK |
| 时间步长/s | 0.1 |
| 最大迭代次数 | 20 |
| 收敛标准 | 10-3 |
| 参数 | 数值 |
|---|---|
| 颗粒粒径/mm | 2 |
| 初始温度/K | 300 |
| 初始空隙率 | 0.4 |
| 煤层高度/mm | 150 |
| 加热壁面温度/K | 1173 |
| 其他壁面温度 | 绝热 |
| 出口 | 压力出口 |
| 动量、能量及DO辐射方程离散 | 二阶迎风差分格式 |
| 质量守恒方程离散 | QUICK |
| 时间步长/s | 0.1 |
| 最大迭代次数 | 20 |
| 收敛标准 | 10-3 |
| 含水率/% | 产率/% | |||
|---|---|---|---|---|
| 焦油 | 热解气 | H2O | 半焦 | |
| 0.41 | 6.08 | 13.08 | 8.82 | 72.02 |
| 3.51 | 5.98 | 13.81 | 8.86 | 71.36 |
| 7.98 | 5.92 | 14.55 | 9.04 | 70.49 |
| 11.68 | 5.90 | 14.78 | 9.38 | 69.93 |
| 含水率/% | 产率/% | |||
|---|---|---|---|---|
| 焦油 | 热解气 | H2O | 半焦 | |
| 0.41 | 6.08 | 13.08 | 8.82 | 72.02 |
| 3.51 | 5.98 | 13.81 | 8.86 | 71.36 |
| 7.98 | 5.92 | 14.55 | 9.04 | 70.49 |
| 11.68 | 5.90 | 14.78 | 9.38 | 69.93 |
| [1] | 刘振虎, 牛鸿权, 田崟墙, 等. 低阶煤热解工艺技术发展现状[J]. 广东化工, 2022, 49(13): 98-101, 108. |
| LIU Zhenhu, NIU Hongquan, TIAN Yinqiang, et al. Development status of low-rank coal pyrolysis technology[J]. Guangdong Chemical Industry, 2022, 49(13): 98-101, 108. | |
| [2] | 吕园, 王佳琪, 王苛宇, 等. 低阶煤热解及其工艺的研究进展[J]. 应用化工, 2022, 51(4): 1156-1159, 1163. |
| Yuan LYU, WANG Jiaqi, WANG Keyu, et al. Research progress on low-rank coal pyrolysis and its process[J]. Applied Chemical Industry, 2022, 51(4): 1156-1159, 1163. | |
| [3] | 邹达, 袁婷婷. 浅谈低阶煤热解技术现状及展望[J]. 天津化工, 2022, 36(4): 12-15. |
| ZOU Da, YUAN Tingting. Talking about the current situation and prospect of low-rank coal pyrolysis technology[J]. Tianjin Chemical Industry, 2022, 36(4): 12-15. | |
| [4] | 李方舟, 李文英, 冯杰. 固体热载体法褐煤热解过程中的传质传热特性[J]. 化工学报, 2016, 67(4): 1136-1144. |
| LI Fangzhou, LI Wenying, FENG Jie. Characteristics of mass and heat transfer in lignite pyrolysis with solid heat carrier[J]. CIESC Journal, 2016, 67(4): 1136-1144. | |
| [5] | 陈兆辉, 敦启孟, 石勇, 等. 热解温度和反应气氛对输送床煤快速热解的影响[J]. 化工学报, 2017, 68(4): 1566-1573. |
| CHEN Zhaohui, Qimeng DUN, SHI Yong, et al. Effects of pyrolysis temperature and atmosphere on rapid coal pyrolysis in transport bed reactor[J]. CIESC Journal, 2017, 68(4): 1566-1573. | |
| [6] | 胡二峰, 武荣成, 张纯, 等. 间热径向流反应器料层厚度对煤热解特性的影响[J]. 化工学报, 2015, 66(2): 738-745. |
| HU Erfeng, WU Rongcheng, ZHANG Chun, et al. Effect of coal bed thickness on pyrolysis behavior in indirectly heated radial flow fixed-bed reactor[J]. CIESC Journal, 2015, 66(2): 738-745. | |
| [7] | 刘壮, 田宜水, 胡二峰, 等. 低阶煤热解影响因素及其工艺技术研究进展[J]. 洁净煤技术, 2021, 27(1): 50-59. |
| LIU Zhuang, TIAN Yishui, HU Erfeng, et al. Research progress on influencing factors and technology of low-rank coal pyrolysis[J]. Clean Coal Technology, 2021, 27(1): 50-59. | |
| [8] | 樊花, 刘振虎, 牛鸿权, 等. 煤热解技术及其运行影响因素分析[J]. 煤化工, 2022, 50(6): 151-154. |
| FAN Hua, LIU Zhenhu, NIU Hongquan, et al. Analysis of coal pyrolysis technology and its operation influencing factors[J]. Coal Chemical Industry, 2022, 50(6): 151-154. | |
| [9] | 曹景沛, 姚乃瑜, 庞新博, 等. 煤热解研究进展及其发展历程[J]. 化工进展, 2024, 43(7): 3620-3636. |
| CAO Jingpei, YAO Naiyu, PANG Xinbo, et al. Research progress and development history of coal pyrolysis[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3620-3636. | |
| [10] | DRYDEN I G C, SPARHAM G A. Carbonization of coals under gas pressure[J]. BCURA Mon. Bull., 1963, 27(1): 1-11. |
| [11] | JONES J F, SCHMID M, EDDINGER R T. Fluidized-bed pyrolysis of coal[J]. Chemical Engineering Progress, 1964, 60(6): 69-73. |
| [12] | HAYASHI Jun-ichiro, NORINAGA Koyo, YAMASHITA Takuji, et al. Effect of sorbed water on conversion of coal by rapid pyrolysis[J]. Energy & Fuels, 1999, 13(3): 611-616. |
| [13] | 胡二峰, 张纯, 武荣成, 等. 内构件固定床反应器中不同水分煤的热解特性[J]. 化工学报, 2015, 66(7): 2656-2663. |
| HU Erfeng, ZHANG Chun, WU Rongcheng, et al. Pyrolysis of coal with different moisture contents in fixed-bed reactor with internals[J]. CIESC Journal, 2015, 66(7): 2656-2663. | |
| [14] | HANDOKO Slamet, RIANDA Sapta, HADI Sapta NUR. Effect of low rank coal temperature and moisture content on slow pyrolysis process[J]. Indonesian Mining Journal, 2021, 24(2): 105-111. |
| [15] | 舒展, 煤热解下行床反应器的CFD模拟[D]. 北京: 中国科学院研究生院(过程工程研究所), 2016: 90-92. |
| SHU Zhan. CFD simulation of gas-solid reacting flow in a downer reactor for coal pyrolysis[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2016: 90-92. | |
| [16] | 张纯. 外热式内构件移动床低阶碎煤热解技术研究[D]. 北京: 中国科学院研究生院(过程工程研究所), 2015: 43-65. |
| ZHANG Chun. Pyrolysis of small-size low-rank coal in indirectly heated moving bed wirh internals[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2015: 43-65. | |
| [17] | QIAN Yanan, YU Yin, XU Guangwen, et al. CFD modeling of coal pyrolysis in externally heated fixed-bed reactor[J]. Fuel, 2018, 233: 685-694. |
| [18] | BAUER R, SCHLUNDER E U. Effective radial thermal conductivity of packings in gas flow. 2. Thermal conductivity of the packing fraction without gas flow[J]. Int. Chem. Eng., 1978, 18(2): 189-204. |
| [19] | BREITBACH G, BARTHELS H. The radiant heat transfer in the high temperature reactor core after failure of the afterheat removal systems[J]. Nuclear Technology, 1980, 49(3): 392-399. |
| [20] | MODEST Michael F. Radiative heat transfer[M]. 3rd ed. Amsterdam: Elsevier, 2013. |
| [21] | GUNN D J. Transfer of heat or mass to particles in fixed and fluidised beds[J]. International Journal of Heat and Mass Transfer, 1978, 21(4): 467-476. |
| [22] | LEE W H. A pressure iteration scheme for two-phase flow modeling[M]//VEZIROGLU T N. Multiphase Transport Fundamentals, Reactor Safety, Applications, Vol. 1. Washington, DC: Hemisphere Publishing, 1980. |
| [23] | SUUBERG Eric M, PETERS William A, HOWARD Jack B. Product composition and kinetics of lignite pyrolysis[J]. Industrial and Engineering Chemistry Process Design and Development, 1978, 17(1): 37-46. |
| [24] | BOROSON Michael L, HOWARD Jack B, LONGWELL John P, et al. Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars[J]. AIChE Journal, 1989, 35(1): 120-128. |
| [25] | WURZENBERGER Johann C, WALLNER Susanne, RAUPENSTRAUCH Harald, et al. Thermal conversion of biomass: Comprehensive reactor and particle modeling[J]. AIChE Journal, 2002, 48(10): 2398-2411. |
| [26] | SARRAF SHIRAZI Ahad, KARIMIPOUR Shayan, GUPTA Rajender. Numerical simulation and evaluation of cavity growth in in situ coal gasification[J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11712-11722. |
| [27] | MA Jie, ZHANG Ming, SU Baogen, et al. Numerical simulation of the entrained flow hydropyrolysis of coal in magnetically rotating plasma reactor[J]. Energy Conversion and Management, 2017, 148: 431-439. |
| [28] | CAREY Van P. Liquid-vapor phase-change phenomena: An introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment, third edition[M]. 3rd ed. Boca Raton: CRC Press, 2020. |
| [29] | 钱亚男. 外热式内构件固定床/移动床煤热解反应器的数值模拟[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2018: 75-88. |
| QIAN Yanan. Numerical modeling of coal pyrolysis in externally-heated fixed-bed/moving-bed pyrolyzer with internals[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2018: 75-88. | |
| [30] | 袁帅, 陈雪莉, 李军, 等. 煤快速热解固相和气相产物生成规律[J]. 化工学报, 2011, 62(5): 1382-1388. |
| YUAN Shuai, CHEN Xueli, LI Jun, et al. Formations of solid and gas phase products during rapid pyrolysis of coal[J]. CIESC Journal, 2011, 62(5): 1382-1388. | |
| [31] | Sylwia POLESEK-KARCZEWSKA, Dariusz KARDAŚ, Przemysław CIŻMIŃSKI, et al. Three phase transient model of wet coal pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 259-265. |
| [1] | LI Ka, XIA Yuxuan, WU Xiaoqin, YI Lan, LUO Hao. Pore scale computational fluid dynamics (CFD) simulation of a double-layer porous medium combustion reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4381-4393. |
| [2] | DAI Guilong, WANG Xiaoyu, HUANGFU Jiangfei, GONG Lingzhu. Convection heat transfer characteristics of pore-scale Laguerre Voronoi open-cell foam [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4394-4407. |
| [3] | LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442. |
| [4] | WANG Zhaolin, ZHANG Zhigang, ZHOU Jing, GAO Chen, PENG Kechen, JIANG Mindi, XI Xi, XU Shengli, LIU Hong. Flow and heat transfer characteristics based on Gyroid triply periodic minimal surface heat exchange components [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4454-4462. |
| [5] | ZHANG Jianwei, YIN Miaomiao, DONG Xin, FENG Ying. Numerical simulation of mixing characteristics in an impinging stream reactor based on oscillating jets [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4488-4499. |
| [6] | WANG Yabin, ZHAO Bidan, XU Fan, LAN Bin, WANG Junwu. Full-loop simulation of gas-solid flow in CFB unit using mesoscience-based structural model [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4500-4512. |
| [7] | DU Lei, CAO Zhitao, XU Lang, ZHANG Yingjie, SUN Baochang, ZOU Haikui, CHU Guangwen, CHEN Jianfeng. Progress research in preparation of adiponitrile [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3683-3696. |
| [8] | ZHANG Ruochen, WANG Jiarui, WANG Simin, ZHANG Zaoxiao. Dynamic collision behavior and energy dissipation mechanism of micron wet particles [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3718-3726. |
| [9] | YANG Xinliu, LIU Qiang, CAO Qian, CUI Yueming, FANG Chaohe. Effect of reservoir seepage on heat transfer performance of a single-well downhole coaxial geothermal heat exchanger [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3860-3868. |
| [10] | WU Zhanhua, KONG Debao, TIAN Junjun, LIANG Rujun, LU Penghui, SHENG Min. Evaluation method of the reactivity safety based on "1+N" mode [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3199-3207. |
| [11] | ZHOU Penghui, ZENG Lin, DAI Li, FENG Xiaobo, NI Di. Numerical calculation of multi-objective performance optimization of a centrifugal fan based on response surface methodology and entropy weighting method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3271-3279. |
| [12] | ZHOU Penghui, ZENG Lin, DAI Li, LI Jiale, CHEN Jianqi, LI Jianping, WANG Hualin. Numerical simulation of mixing characteristics of a micro-hydrocyclone mixer [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3280-3287. |
| [13] | CHEN Juhui, ZHANG Qian, LI Dan, LI Weikang, CHEN Ke, ZHOU Huan, ZHURAVKOV Michael, LAPATSIN Siarhel, JIANG Wenrui. Flow characterization of non-spherical particles based on DEM-PPM method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3382-3392. |
| [14] | HE Yijian, LIU Xiangkun, SHI Yao, DUAN Xuezhi. Catalyst particle shape design for ethane oxidative dehydrogenation to ethylene [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3497-3508. |
| [15] | LI Haoyang, LI Hongwei, TAN Jianyu. Dynamic characteristics of boiling bubbles under transient oscillating heating conditions [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 735-742. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |