Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 3976-3984.DOI: 10.16085/j.issn.1000-6613.2024-0808
• Materials science and technology • Previous Articles
YU Ning1(
), WANG Qiuyue1, WANG Zhicai2, GAO Ziyi1, CHAI Yongming1(
), DONG Bin1(
)
Received:2024-05-15
Revised:2025-01-14
Online:2025-08-04
Published:2025-07-25
Contact:
CHAI Yongming, DONG Bin
于宁1(
), 王秋月1, 王志才2, 高子怡1, 柴永明1(
), 董斌1(
)
通讯作者:
柴永明,董斌
作者简介:于宁(1999—),女,博士研究生,研究方向为电解水制氢。E-mail:1659933093@qq.com。
基金资助:CLC Number:
YU Ning, WANG Qiuyue, WANG Zhicai, GAO Ziyi, CHAI Yongming, DONG Bin. Double-sites synergistic regulation for boosting water oxidation of La1-x Ni1-y Fe y O3‑δ[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3976-3984.
于宁, 王秋月, 王志才, 高子怡, 柴永明, 董斌. 双位点协同调控增强钙钛矿氧化物的水氧化活性[J]. 化工进展, 2025, 44(7): 3976-3984.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0808
| 催化剂 | 过电位/mV | 电解液 | 参考文献 |
|---|---|---|---|
| La0.8NiO3-δ +FeCl3 | 345 | 1mol/L KOH | 本工作 |
| La2NiMnO6 | 370 | 1mol/L KOH | [ |
| Sr0.95Nb0.1Co0.9-x Ni x O3-δ | 438 | 1mol/L KOH | [ |
| LaCoO3 | 470 | 1mol/L KOH | [ |
| LaNiO3/C | 470 | 1mol/L KOH | [ |
| Co3O4 | 420 | 1mol/L KOH | [ |
| La1-x Sr x CoO3 | 495 | 1mol/L KOH | [ |
| Ca2FeCoO5 | 390 | 1mol/L KOH | [ |
| LaNi0.8Fe0.2O3 | 510 | 1mol/L KOH | [ |
| 聚多巴胺/La5Ni3Co2 | 360 | 1mol/L KOH | [ |
| 催化剂 | 过电位/mV | 电解液 | 参考文献 |
|---|---|---|---|
| La0.8NiO3-δ +FeCl3 | 345 | 1mol/L KOH | 本工作 |
| La2NiMnO6 | 370 | 1mol/L KOH | [ |
| Sr0.95Nb0.1Co0.9-x Ni x O3-δ | 438 | 1mol/L KOH | [ |
| LaCoO3 | 470 | 1mol/L KOH | [ |
| LaNiO3/C | 470 | 1mol/L KOH | [ |
| Co3O4 | 420 | 1mol/L KOH | [ |
| La1-x Sr x CoO3 | 495 | 1mol/L KOH | [ |
| Ca2FeCoO5 | 390 | 1mol/L KOH | [ |
| LaNi0.8Fe0.2O3 | 510 | 1mol/L KOH | [ |
| 聚多巴胺/La5Ni3Co2 | 360 | 1mol/L KOH | [ |
| [1] | CHU Steven, MAJUMDAR Arun. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
| [2] | JIAO Yan, ZHENG Yao, JARONIEC Mietek, et al. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086. |
| [3] | 何杨华, 徐金铭, 王发楠, 等. Ni-Fe基析氧阳极材料的研究进展[J]. 化工进展, 2016, 35(7): 2057-2062. |
| HE Yanghua, XU Jinming, WANG Fanan, et al. Recent advances in Ni-Fe-based electrocatalysts for oxygen evolution reaction[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2057-2062. | |
| [4] | LI Xiaoge, GUAN BU yuan, GAO Shuyan, et al. A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction[J]. Energy & Environmental Science, 2019, 12(2): 648-655. |
| [5] | ZHANG Huabin, LIU Yanyu, CHEN Tao, et al. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix[J]. Advanced Materials, 2019, 31(48): e1904548. |
| [6] | KASIAN Olga, GROTE Jan-Philipp, GEIGER Simon, et al. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium[J]. Angewandte Chemie International Edition, 2018, 57(9): 2488-2491. |
| [7] | YU Ning, ZHANG Zhijie, CHAI Yongming, et al. Regulation engineering of the surface and structure of perovskite-based electrocatalysts for the oxygen evolution reaction[J]. Materials Chemistry Frontiers, 2023, 7(19): 4236-4258. |
| [8] | Tyler MEFFORD J, RONG Xi, ABAKUMOV Artem M, et al. Water electrolysis on La1- x Sr x CoO3- δ perovskite electrocatalysts[J]. Nature Communications, 2016, 7: 11053. |
| [9] | ZHAO Chunhua, LI Nan, ZHANG Ruizhi, et al. Surface reconstruction of La0.8Sr0.2Co0.8Fe0.2O3- δ for superimposed OER performance[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 47858-47867. |
| [10] | LETTENMEIER P, WANG R, ABOUATALLAH R, et al. Durable membrane electrode assemblies for proton exchange membrane electrolyzer systems operating at high current densities[J]. Electrochimica Acta, 2016, 210: 502-511. |
| [11] | LI Dongguo, PARK Eun Joo, ZHU Wenlei, et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers[J]. Nature Energy, 2020, 5(5): 378-385. |
| [12] | KIM Bae-Jung, FABBRI Emiliana, ABBOTT Daniel F, et al. Functional role of Fe-doping in co-based perovskite oxide catalysts for oxygen evolution reaction[J]. Journal of the American Chemical Society, 2019, 141(13): 5231-5240. |
| [13] | BIAN Juanjuan, LI Zhipeng, LI Nianwu, et al. Oxygen deficient LaMn0.75Co0.25O3- δ nanofibers as an efficient electrocatalyst for oxygen evolution reaction and zinc-air batteries[J]. Inorganic Chemistry, 2019, 58(12): 8208-8214. |
| [14] | RETUERTO Maria, Federico CALLE-VALLEJO, PASCUAL Laura, et al. La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21454-21464. |
| [15] | LI Jing, YANG Fan, DU Yunzhu, et al. The critical role of A, B-site cations and oxygen vacancies on the OER electrocatalytic performances of Bi0.15Sr0.85Co1- x Fe x O3- δ (0.2≤x≤1) perovskites in alkaline media[J]. Chemical Engineering Journal, 2023, 451: 138646. |
| [16] | ZHAO Jiawei, SHI Zixiao, LI Chengfei, et al. Regulation of perovskite surface stability on the electrocatalysis of oxygen evolution reaction[J]. ACS Materials Letters, 2021, 3(6): 721-737. |
| [17] | LIU Dong, ZHOU Pengfei, BAI Haoyun, et al. Development of perovskite oxide-based electrocatalysts for oxygen evolution reaction[J]. Small, 2021, 17(43): e2101605. |
| [18] | 兰高力, 葛性波, 梁梓灏. 电化学刻蚀制备表面纳米多孔NiMoCu电解水析氢催化剂[J]. 化工新型材料, 2022, 50(4): 202-207. |
| LAN Gaoli, GE Xingbo, LIANG Zihao. Surface nanoporous NiMoCu electrode material prepared by electrochemical dealloying for hydrogen evolution[J]. New Chemical Materials, 2022, 50(4): 202-207. | |
| [19] | LIU Huan, XIE Rongrong, WANG Qixiang, et al. Enhanced OER performance and dynamic transition of surface reconstruction in LaNiO3 thin films with nanoparticles decoration[J]. Advanced Science, 2023, 10(13): e2207128. |
| [20] | WU Zhengcui, ZOU Zexian, HUANG Jiansong, et al. Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting[J]. Journal of Catalysis, 2018, 358: 243-252. |
| [21] | ZOU Zexian, WANG Xiangyu, HUANG Jiansong, et al. An Fe-doped nickel selenide nanorod/nanosheet hierarchical array for efficient overall water splitting[J]. Journal of Materials Chemistry A, 2019, 7(5): 2233-2241. |
| [22] | LIU Jishan, JIA Endong, WANG Le, et al. Tuning the electronic structure of LaNiO3 through alloying with strontium to enhance oxygen evolution activity[J]. Advanced Science, 2019, 6(19): 1901073. |
| [23] | LU Chengxing, YAN Yu, ZHAI Tengfei, et al. 2-nm-thick NiCo LDH@NiSe single-crystal nanorods grown on Ni foam as integrated electrode with enhanced areal capacity for supercapacitors[J]. Batteries & Supercaps, 2020, 3(6): 534-540. |
| [24] | JEGHAN Shrine Maria Nithya, KIM Dongjoon, LEE Yuhyeon, et al. Designing a smart heterojunction coupling of cobalt-iron layered double hydroxide on nickel selenide nanosheets for highly efficient overall water splitting kinetics[J]. Applied Catalysis B: Environmental, 2022, 308: 121221. |
| [25] | SUN Yu, LI Ran, CHEN Xiaoxuan, et al. A-site management prompts the dynamic reconstructed active phase of perovskite oxide OER catalysts[J]. Advanced Energy Materials, 2021, 11(12): 2003755. |
| [26] | 彭立山, 魏子栋. 高性能电解水电极催化材料的设计及产品工程[J]. 化学进展, 2018, 30(1): 14-28. |
| PENG Lishan, WEI Zidong. Design and product engineering of high-performance electrode catalytic materials for water electrolysis[J]. Progress in Chemistry, 2018, 30(1): 14-28. | |
| [27] | TONG Yun, WU Junchi, CHEN Pengzuo, et al. Vibronic superexchange in double perovskite electrocatalyst for efficient electrocatalytic oxygen evolution[J]. Journal of the American Chemical Society, 2018, 140(36): 11165-11169. |
| [28] | ISLAM Quazi Arif, MAJEE Rahul, BHATTACHARYYA Sayan. Bimetallic nanoparticle decorated perovskite oxide for state-of-the-art trifunctional electrocatalysis[J]. Journal of Materials Chemistry A, 2019, 7(33): 19453-19464. |
| [29] | TONG Yun, GUO Yuqiao, CHEN Pengzuo, et al. Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity[J]. Chem, 2017, 3(5): 812-821. |
| [30] | ASHOK Anchu, KUMAR Anand, BHOSALE Rahul R, et al. Combustion synthesis of bifunctional LaMO3 (M=Cr, Mn, Fe, Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media[J]. Journal of Electroanalytical Chemistry, 2018, 809: 22-30. |
| [31] | GONG Yaqiong, XU Zhoufeng, PAN Hailong. Facile synthesis and characterization of MOF-derived porous Co3O4 composite for oxygen evolution reaction[J]. ChemistrySelect, 2019, 4(4): 1131-1137. |
| [32] | SINGH Narendra Kumar, SHARMA Priya, KUMAR Indresh, et al. Oxygen evolution electrocatalytic properties of perovskite-type La1- x Sr x CoO3 (0<x<0.8) oxides obtained by polyvinylpyrrolidone sol-gel route[J]. International Journal of Electrochemical Science, 2019, 14(12): 11379-11390. |
| [33] | TSUJI Etsushi, MOTOHASHI Teruki, NODA Hiroyuki, et al. Brownmillerite-type Ca2FeCoO5 as a practicable oxygen evolution reaction catalyst[J]. ChemSusChem, 2017, 10(14): 2864-2868. |
| [34] | ZHANG Daiwei, SONG Yufeng, DU Zhenzhen, et al. Active LaNi1- x Fe x O3 bifunctional catalysts for air cathodes in alkaline media[J]. Journal of Materials Chemistry A, 2015, 3(18): 9421-9426. |
| [35] | HAN Yujie, ZHU Zhijun, HUANG Liang, et al. Hydrothermal synthesis of polydopamine-functionalized cobalt-doped lanthanum nickelate perovskite nanorods for efficient water oxidation in alkaline solution[J]. Nanoscale, 2019, 11(41): 19579-19585. |
| [36] | SAAD Ali, LIU Dongqing, WU Yuchen, et al. Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance[J]. Applied Catalysis B: Environmental, 2021, 298: 120529. |
| [37] | ZHANG Nan, HU Yang, AN Li, et al. Surface activation and Ni-S stabilization in NiO/NiS2 for efficient oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2022, 61(35): e202207217. |
| [38] | WEN Qunlei, WANG Shuzhe, WANG Ruiwen, et al. Nanopore-rich NiFe LDH targets the formation of the high-valent nickel for enhanced oxygen evolution reaction[J]. Nano Research, 2023, 16(2): 2286-2293. |
| [1] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [2] | LU Peng, ZHANG Di, LIU Yaoyao, YU Wanjin, LIU Wucan, ZHANG Jianjun. Research progress of catalysts for gas-phase dehydrofluorination to synthesize C2 hydrofluoroolefins [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3907-3916. |
| [3] | GAO Jiaojiao, YAN Shiyu, YANG Taishun, XIE Shangzhi, YANG Yanjuan, XU Jing. Effect of alumina support crystal structure of Ru-based catalysts on polyethylene hydrogenolysis performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3917-3927. |
| [4] | CHEN Dongjian, SUN Yuqian, YIN Fengxiang. Preparation of FeNi3-Fe3O4/CN electrocatalysts and their electrocatalytic oxygen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3928-3937. |
| [5] | KONG Can, LIU Yuhan, SHENG Yu, LIU Fang, CHANG Huazhen. Polyaniline enhanced cuprous oxide for carbon dioxide reduction [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3144-3153. |
| [6] | YAO Ruwei, SONG Yueyin, NIU Qinqin, LI Congming. Na-S co-modified iron catalysts for CO2 hydrogenation to C2+ alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3154-3162. |
| [7] | CHEN Shaowei, CHEN Yi, NIU Jiangqi, LIU Tianqi, HUANG Jianguo, CHEN Huanhao, FAN Xiaolei. Research progress and application prospects of dielectric barrier discharge plasma catalytic reactors [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3175-3189. |
| [8] | LI Ming, ZHOU Yi, NAN Lan, YE Xiaosheng. Advances in automatic optimization of continuous synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3190-3198. |
| [9] | WANG Jiahui, LI Peiya, YANG Fusheng, WANG Bin, FANG Tao. Research progress on the dehydrogenation of methylcyclohexane as a liquid organic hydrogen carrier [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3208-3223. |
| [10] | ZHANG Ying, ZHENG Xuemei, MA Aiyuan, TIAN Shihong. Research progress based on conventional and microwave pyrolysis behavior of polyethylene [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3224-3237. |
| [11] | ZHOU Penghui, ZENG Lin, DAI Li, FENG Xiaobo, NI Di. Numerical calculation of multi-objective performance optimization of a centrifugal fan based on response surface methodology and entropy weighting method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3271-3279. |
| [12] | SHAN Linghai, DUAN Huanhuan, ZHENG Xuming, HUANG Xiaohuang, CUI Guomin. A new competitive enhancement strategy for heat exchange units and optimization of heat exchange networks [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3393-3404. |
| [13] | LI Hongwei, XU Hanqiao, ZHAO Yan, LIU Yaozong, TENG Zhijun, JI Dong, LI Guixian. Research progress and prospect of platinum-based catalysts for electrocatalytic methanol oxidation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3443-3456. |
| [14] | KONG Xiaoyang, LIU Zhentao, ZOU Yutong, WANG Dandan, DUAN Aijun, XU Chunming, WANG Xilong. Development in catalysts for hydrocracking of polycyclic aromatic hydrocarbons to BTX [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3468-3485. |
| [15] | LIU Shizhe. Advances in catalytic system for methylcyclohexane dehydrogenation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3486-3496. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |