Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (3): 1454-1465.DOI: 10.16085/j.issn.1000-6613.2024-0322
• Materials science and technology • Previous Articles Next Articles
ZHAO Kaiqiang1(
), LIU Hao2, DAI Zhenhua2, SUN Zhenfeng1, YANG Chao1, MA Cheng2
Received:2024-02-26
Revised:2024-04-08
Online:2025-04-16
Published:2025-03-25
Contact:
ZHAO Kaiqiang
赵凯强1(
), 刘浩2, 戴振华2, 孙振峰1, 杨超1, 马诚2
通讯作者:
赵凯强
作者简介:赵凯强(1991—),男,硕士,研究方向为精细化学品。E-mail:zhaokaiqiang.fshy@sinopec.com。
基金资助:CLC Number:
ZHAO Kaiqiang, LIU Hao, DAI Zhenhua, SUN Zhenfeng, YANG Chao, MA Cheng. Research progress in preparation of high sulfur polymers from vegetable oils[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1454-1465.
赵凯强, 刘浩, 戴振华, 孙振峰, 杨超, 马诚. 植物油制备高硫聚合物的研究进展[J]. 化工进展, 2025, 44(3): 1454-1465.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0322
| 植物油 | 脂肪酸质量分数/% | ||||
|---|---|---|---|---|---|
| 油酸 | 亚油酸 | 棕榈酸 | 硬脂酸 | 亚麻酸 | |
| 葵花籽油 | 21.4 | 66.4 | 6.1 | 5.3 | — |
| 高油酸葵花籽油 | 80.3 | 10.4 | 3.5 | 4.4 | — |
| 红花油 | 17.9 | 73.2 | 6.4 | 2.5 | — |
| 高油酸红花油 | 77.5 | 13.2 | 4.6 | 2.2 | — |
| 高亚油酸红花油 | 14.6 | 75.2 | 6.7 | 2.6 | — |
| 豆油 | 20.2 | 63.6 | 6.0 | 5.2 | 5.0 |
| 高油酸大豆油 | 83.6 | 3.7 | 6.2 | 3.0 | 1.7 |
| 玉米油 | 26.7 | 59.8 | 10.6 | 2.0 | 0.9 |
| 棉籽油 | 41.0 | 38.0 | 18.0 | 2.0 | 1.0 |
| 菜籽油 | 64.4 | 22.2 | 2.5 | 1.0 | 8.2 |
| 花生油 | 50.0 | 30.0 | 10.0 | 3.0 | — |
| 亚麻籽油 | 22.0 | 17.0 | 5.0 | 3.0 | 52.0 |
| 橄榄油 | 64.0 | 16.0 | 14.0 | 2.0 | 2.0 |
| 椰子油 | 7.0 | 1.0 | 9.0 | 2.0 | — |
| 棕榈油 | 41.0 | 10.0 | 42.0 | 5.0 | — |
| 植物油 | 脂肪酸质量分数/% | ||||
|---|---|---|---|---|---|
| 油酸 | 亚油酸 | 棕榈酸 | 硬脂酸 | 亚麻酸 | |
| 葵花籽油 | 21.4 | 66.4 | 6.1 | 5.3 | — |
| 高油酸葵花籽油 | 80.3 | 10.4 | 3.5 | 4.4 | — |
| 红花油 | 17.9 | 73.2 | 6.4 | 2.5 | — |
| 高油酸红花油 | 77.5 | 13.2 | 4.6 | 2.2 | — |
| 高亚油酸红花油 | 14.6 | 75.2 | 6.7 | 2.6 | — |
| 豆油 | 20.2 | 63.6 | 6.0 | 5.2 | 5.0 |
| 高油酸大豆油 | 83.6 | 3.7 | 6.2 | 3.0 | 1.7 |
| 玉米油 | 26.7 | 59.8 | 10.6 | 2.0 | 0.9 |
| 棉籽油 | 41.0 | 38.0 | 18.0 | 2.0 | 1.0 |
| 菜籽油 | 64.4 | 22.2 | 2.5 | 1.0 | 8.2 |
| 花生油 | 50.0 | 30.0 | 10.0 | 3.0 | — |
| 亚麻籽油 | 22.0 | 17.0 | 5.0 | 3.0 | 52.0 |
| 橄榄油 | 64.0 | 16.0 | 14.0 | 2.0 | 2.0 |
| 椰子油 | 7.0 | 1.0 | 9.0 | 2.0 | — |
| 棕榈油 | 41.0 | 10.0 | 42.0 | 5.0 | — |
| 植物油 种类 | 合成 条件 | 工艺 | 应用 领域 | 参考文献 |
|---|---|---|---|---|
| 菜籽油、葵花 籽油、橄榄油 | 180℃ | 研磨 | 吸附Hg金属 | [ |
| 菜籽油、米糠油、蓖麻油 | 175℃ | 造孔 | 吸附Hg2+ | [ |
| 葵花籽油、亚麻 籽油、橄榄油 | 160℃ | — | 锂硫电池 | [ |
| 玉米油 | 170℃ | — | — | [ |
| 棉籽油 | 150℃ | 研磨 | 吸附Hg2+ | [ |
| 大豆油 | 165℃ | 研磨 | 硫肥 | [ |
| 菜籽油 | 180℃ | 包裹 | 缓释肥料 | [ |
| 菜籽油 | 180℃ | 造孔 | 吸附Fe3+ | [ |
| 菜籽油 | 180℃ | 造孔 | 吸附油 | [ |
| 菜籽油 | 170℃ | 固化成型 | 自修复 | [ |
| 菜籽油 | 170℃ | 造孔、压缩成型 | 自修复 | [ |
| 菜籽油 | 180℃ | 造孔、压缩成型 | 吸附Pb2+、限制浸出 | [ |
| 橡胶籽油 | 164℃ | 涂敷 | 缓释肥料 | [ |
| 蓖麻油 | 170℃ | 研磨 | 抗氧化、抗菌 | [ |
| 植物油 种类 | 合成 条件 | 工艺 | 应用 领域 | 参考文献 |
|---|---|---|---|---|
| 菜籽油、葵花 籽油、橄榄油 | 180℃ | 研磨 | 吸附Hg金属 | [ |
| 菜籽油、米糠油、蓖麻油 | 175℃ | 造孔 | 吸附Hg2+ | [ |
| 葵花籽油、亚麻 籽油、橄榄油 | 160℃ | — | 锂硫电池 | [ |
| 玉米油 | 170℃ | — | — | [ |
| 棉籽油 | 150℃ | 研磨 | 吸附Hg2+ | [ |
| 大豆油 | 165℃ | 研磨 | 硫肥 | [ |
| 菜籽油 | 180℃ | 包裹 | 缓释肥料 | [ |
| 菜籽油 | 180℃ | 造孔 | 吸附Fe3+ | [ |
| 菜籽油 | 180℃ | 造孔 | 吸附油 | [ |
| 菜籽油 | 170℃ | 固化成型 | 自修复 | [ |
| 菜籽油 | 170℃ | 造孔、压缩成型 | 自修复 | [ |
| 菜籽油 | 180℃ | 造孔、压缩成型 | 吸附Pb2+、限制浸出 | [ |
| 橡胶籽油 | 164℃ | 涂敷 | 缓释肥料 | [ |
| 蓖麻油 | 170℃ | 研磨 | 抗氧化、抗菌 | [ |
| 1 | Jeewoo LIM, PYUN Jeffrey, CHAR Kookheon. Recent approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials[J]. Angewandte Chemie International Edition, 2015, 54(11): 3249-3258. |
| 2 | NGUYEN Thanh Binh. Recent advances in organic reactions involving elemental sulfur[J]. Advanced Synthesis & Catalysis, 2017, 359(7): 1066-1130. |
| 3 | CHUNG Woo Jin, GRIEBEL Jared J, KIM Eui Tae, et al. The use of elemental sulfur as an alternative feedstock for polymeric materials[J]. Nature Chemistry, 2013, 5(6): 518-524. |
| 4 | GRIEBEL Jared J, GLASS Richard S, CHAR Kookheon, et al. Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense[J]. Progress in Polymer Science, 2016, 58: 90-125. |
| 5 | WU Xiaofeng, SMITH Jessica A, PETCHER Samuel, et al. Catalytic inverse vulcanization[J]. Nature Communications, 2019, 10(1): 647. |
| 6 | ZHANG Yueyan, GRIEBEL Jared J, DIRLAM Philip T, et al. Inverse vulcanization of elemental sulfur and styrene for polymeric cathodes in Li-S batteries[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(1): 107-116. |
| 7 | YAN Longlong, HAN Dongmei, XIAO Min, et al. Instantaneous carbonization of an acetylenic polymer into highly conductive graphene-like carbon and its application in lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(15): 7015-7025. |
| 8 | LIU Jingjing, CAMPBELL Brennan, YE Rachel, et al. Facile and scalable synthesis of copolymer-sulfur composites as cathodes for high performance lithium-sulfur batteries[J]. MRS Advances, 2017, 2(54): 3271-3276. |
| 9 | PARKER D J, JONES H A, PETCHER S, et al. Low cost and renewable sulfur-polymers by inverse vulcanisation, and their potential for mercury capture[J]. Journal of Materials Chemistry A, 2017, 5(23): 11682-11692. |
| 10 | KHAWAJA Shahrukh Z, VIJAY KUMAR S, JENA Kishore K, et al. Flexible sulfur film from inverse vulcanization technique[J]. Materials Letters, 2017, 203: 58-61. |
| 11 | KANG Haneol, KIM Hoon, PARK Moon Jeong. Sulfur-rich polymers with functional linkers for high-capacity and fast-charging lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(32): 1802423. |
| 12 | HOEFLING Alexander, NGUYEN Dan Thien, LEE Young Joo, et al. A sulfur eugenol allyl ether copolymer: A material synthesized via inverse vulcanization from renewable resources and its application in Li S batteries[J]. Materials Chemistry Frontiers, 2017, 1(9): 1818-1822. |
| 13 | THIOUNN Timmy, LAUER Moira K, BEDFORD Monte S, et al. Thermally-healable network solids of sulfur-crosslinked poly(4-allyloxystyrene)[J]. RSC Advances, 2018, 8(68): 39074-39082. |
| 14 | KIM Eui Tae, CHUNG Woo Jin, Jaehoon LIM, et al. One-pot synthesis of PbS NP/sulfur-oleylamine copolymer nanocomposites via the copolymerization of elemental sulfur with oleylamine[J]. Polymer Chemistry, 2014, 5(11): 3617-3623. |
| 15 | TZITZIOS Vasileios, DIMOS Konstantinos, LELIDIS Ioannis, et al. Sulfur-oleyl amine platelet derivatives with liquid crystalline behavior[J]. RSC Advances, 2018, 8(72): 41480-41483. |
| 16 | ARSLAN Mustafa, KISKAN Baris, CENGIZ Elif Ceylan, et al. Inverse vulcanization of bismaleimide and divinylbenzene by elemental sulfur for lithium sulfur batteries[J]. European Polymer Journal, 2016, 80: 70-77. |
| 17 | SHUKLA Swapnil, GHOSH Arnab, Uttam Kumar SEN, et al. Cardanol benzoxazine-sulfur copolymers for Li-S batteries: Symbiosis of sustainability and performance[J]. ChemistrySelect, 2016, 1(3): 594-600. |
| 18 | ARSLAN Mustafa, KISKAN Baris, YAGCI Yusuf. Combining elemental sulfur with polybenzoxazines via inverse vulcanization[J]. Macromolecules, 2016, 49(3): 767-773. |
| 19 | WORTHINGTON Max J H, KUCERA Renata L, ALBUQUERQUE Inês S, et al. Laying waste to mercury: Inexpensive sorbents made from sulfur and recycled cooking oils[J]. Chemistry—A European Journal, 2017, 23(64): 16219-16230. |
| 20 | ANNISA Arianti N, WIDAYAT Widayat. A review of bio-lubricant production from vegetable oils using esterification transesterification process[J]. MATEC Web of Conferences, 2018, 156: 06007. |
| 21 | ABBASI Amin, NASEF Mohamed Mahmoud, YAHYA Wan Zaireen Nisa. Copolymerization of vegetable oils and bio-based monomers with elemental sulfur: A new promising route for bio-based polymers[J]. Sustainable Chemistry and Pharmacy, 2019, 13: 100158. |
| 22 | Ya LYU, SU Qin. The exploration of the inverse vulcanization mechanism of tung oil by controlling the oxygen and moisture presence during reactions[J]. Polymers and Polymer Composites, 2023, 31: 09673911231181255. |
| 23 | HOEFLING Alexander, LEE Young Joo, THEATO Patrick. Sulfur-based polymer composites from vegetable oils and elemental sulfur: A sustainable active material for Li S batteries[J]. Macromolecular Chemistry and Physics, 2017, 218(1): 1600303. |
| 24 | TIKOALU Alfrets D, LUNDQUIST Nicholas A, CHALKER Justin M. Mercury sorbents made by inverse vulcanization of sustainable triglycerides: The plant oil structure influences the rate of mercury removal from water[J]. Advanced Sustainable Systems, 2020, 4(3): 1900111. |
| 25 | ABBASI Amin, NASEF Mohamed Mahmoud, YAHYA Wan Zaireen Nisa, et al. Preparation and characterization of sulfur-vinylbenzyl chloride polymer under optimized reaction conditions using inverse vulcanization[J]. European Polymer Journal, 2021, 143: 110202. |
| 26 | NAJMAH Israa Bu, LUNDQUIST Nicholas A, STANFIELD Melissa K, et al. Insulating composites made from sulfur, canola oil, and wool[J]. ChemSusChem, 2021, 14(11): 2352-2359. |
| 27 | LUNDQUIST Nicholas A, TIKOALU Alfrets D, WORTHINGTON Max J H, et al. Reactive compression molding post-inverse vulcanization: A method to assemble, recycle, and repurpose sulfur polymers and composites[J]. Chemistry—A European Journal, 2020, 26(44): 10035-10044. |
| 28 | KARUNARATHNA Menisha S, LAUER Moira K, THIOUNN Timmy, et al. Valorisation of waste to yield recyclable composites of elemental sulfur and lignin[J]. Journal of Materials Chemistry A, 2019, 7(26): 15683-15690. |
| 29 | LOPEZ Claudia V, KARUNARATHNA Menisha S, LAUER Moira K, et al. High strength, acid-resistant composites from canola, sunflower, or linseed oils: Influence of triglyceride unsaturation on material properties[J]. Journal of Polymer Science, 2020, 58(16): 2259-2266. |
| 30 | ABBASI Amin, NASEF Mohamed Mahmoud, YAHYA Wan Zaireen Nisa, et al. Preparation and characterization of green polymer by copolymerization of corn oil and sulphur at molten state[J]. Polymers and Polymer Composites, 2021, 29(8): 1179-1190. |
| 31 | GHUMMAN Ali Shaan Manzoor, SHAMSUDDIN Rashid, NASEF Mohamed Mahmoud, et al. Optimization of synthesis of inverse vulcanized copolymers from rubber seed oil using response surface methodology[J]. Polymer, 2021, 219: 123553. |
| 32 | CHEN Yurong, YASIN Akram, ZHANG Yagang, et al. Preparation and modification of biomass-based functional rubbers for removing mercury(Ⅱ) from aqueous solution[J]. Materials, 2020, 13(3): 632. |
| 33 | MANN Maximilian, KRUGER Jessica E, ANDARI Firas, et al. Sulfur polymer composites as controlled-release fertilisers[J]. Organic & Biomolecular Chemistry, 2019, 17(7): 1929-1936. |
| 34 | VALLE Stella F, GIROTO Amanda S, KLAIC Rodrigo, et al. Sulfur fertilizer based on inverse vulcanization process with soybean oil[J]. Polymer Degradation and Stability, 2019, 162: 102-105. |
| 35 | LUNDQUIST Nicholas A, WORTHINGTON Max J H, ADAMSON Nick, et al. Polysulfides made from re-purposed waste are sustainable materials for removing iron from water[J]. RSC Advances, 2018, 8(3): 1232-1236. |
| 36 | BEAR Joseph C, MCGETTRICK James D, PARKIN Ivan P, et al. Porous carbons from inverse vulcanised polymers[J]. Microporous and Mesoporous Materials, 2016, 232: 189-195. |
| 37 | RAHIMI AliReza, GARCÍA Jeannette M. Chemical recycling of waste plastics for new materials production[J]. Nature Reviews Chemistry, 2017, 1: 46. |
| 38 | TONKIN Samuel J, GIBSON Christopher T, CAMPBELL Jonathan A, et al. Chemically induced repair, adhesion, and recycling of polymers made by inverse vulcanization[J]. Chemical Science, 2020, 11(21): 5537-5546. |
| 39 | GHUMMAN Ali Shaan Manzoor, SHAMSUDDIN Rashid, NASEF Mohamed Mahmoud, et al. Sulfur enriched slow-release coated urea produced from inverse vulcanized copolymer[J]. Science of the Total Environment, 2022, 846: 157417. |
| 40 | VALLE Stella Fortuna Do, GIROTO Amanda Soares, REIS Heitor Pontes Gestal, et al. Synergy of phosphate-controlled release and sulfur oxidation in novel polysulfide composites for sustainable fertilization[J]. Journal of Agricultural and Food Chemistry, 2021, 69(8): 2392-2402. |
| 41 | LUNDQUIST Nicholas A, CHALKER Justin M. Confining a spent lead sorbent in a polymer made by inverse vulcanization prevents leaching[J]. Sustainable Materials and Technologies, 2020, 26: e00222. |
| 42 | KAWAMURA Hiroki. The relation between law and technology in Japan: Liability for technology-related mass damage in the cases of minamata disease, asbestos, and the fukushima daiichi nuclear disaster[J]. Contemporary Japan, 2018, 30(1): 3-27. |
| 43 | MANN Maximilian, LUO Xuan, TIKOALU Alfrets D, et al. Carbonisation of a polymer made from sulfur and canola oil[J]. Chemical Communications, 2021, 57(51): 6296-6299. |
| 44 | Amanda HARO-MARTÍNEZ, Rocío ARROYO-CARRASCO, Laura GALVÁN, et al. Competitive and synergistic effects of metal adsorption in water remediation processes mediated by hybrid copolymers[J]. Chemical Engineering Journal, 2023, 470: 143905. |
| 45 | REN Zixuan, JIANG Xue, LIU Lingli, et al. Modification of high-sulfur polymer using a mixture porogen and its application as advanced adsorbents for Au(Ⅲ) from wastewater[J]. Journal of Molecular Liquids, 2021, 328: 115437. |
| 46 | LIMJUCO Lawrence A, NISOLA Grace M, PAROHINOG Khino J, et al. Water-insoluble hydrophilic polysulfides as microfibrous composites towards highly effective and practical Hg2+ capture[J]. Chemical Engineering Journal, 2019, 378: 122216. |
| 47 | THIELKE Michael W, BULTEMA Lindsey A, BRAUER Daniel D, et al. Rapid mercury(Ⅱ) removal by electrospun sulfur copolymers[J]. Polymers, 2016, 8(7): 266. |
| 48 | CHALKER Justin M, MANN Maximilian, WORTHINGTON Max J H, et al. Polymers made by inverse vulcanization for use as mercury sorbents[J]. Organic Materials, 2021, 3(2): 362-373. |
| 49 | SING Kenneth S W. Assessment of surface area by gas adsorption[M]//Adsorption by powders and porous solids. Amsterdam: Elsevier, 2014: 237-268. |
| 50 | TIEN Chi. Adsorption equilibrium relationships, isotherm expressions, their determinations, and predictions[M]//Introduction to adsorption. Amsterdam: Elsevier, 2019: 23-85. |
| 51 | XUE Jiajia, WU Tong, DAI Yunqian, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8): 5298-5415. |
| 52 | HUANG Yunpeng, MIAO Yuee, LIU Tianxi. Electrospun fibrous membranes for efficient heavy metal removal[J]. Journal of Applied Polymer Science, 2014, 131(19): 40864. |
| 53 | WANJALE Santosh, BIRAJDAR Mallinath, Jyoti JOG, et al. Surface tailored PS/TiO2 composite nanofiber membrane for copper removal from water[J]. Journal of Colloid and Interface Science, 2016, 469: 31-37. |
| 54 | BARTON Thomas J, BULL Lucy M, KLEMPERER Walter G, et al. Tailored porous materials[J]. Chemistry of Materials, 1999, 11(10): 2633-2656. |
| 55 | SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
| 56 | LEE Jet-Sing M, PARKER Douglas J, COOPER Andrew I, et al. High surface area sulfur-doped microporous carbons from inverse vulcanised polymers[J]. Journal of Materials Chemistry A, 2017, 5(35): 18603-18609. |
| 57 | HASELL T, PARKER D J, JONES H A, et al. Porous inverse vulcanised polymers for mercury capture[J]. Chemical Communications, 2016, 52(31): 5383-5386. |
| 58 | LIN Ho-Keng, LAI Yuesheng, LIU Yingling. Cross-linkable and self-foaming polysulfide materials for repairable and mercury capture applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4515-4522. |
| 59 | Li-An KO, HUANG Yun-Syuan, LIN Yuya A. Bipyridine-containing polysulfide materials for broad-spectrum removal of heavy metals from water[J]. ACS Applied Polymer Materials, 2021, 3(7): 3363-3372. |
| 60 | WORTHINGTON Max J H, SHEARER Cameron J, ESDAILE Louisa J, et al. Sustainable polysulfides for oil spill remediation: Repurposing industrial waste for environmental benefit[J]. Advanced Sustainable Systems, 2018, 2(6): 1800024. |
| 61 | PETCHER Samuel, PARKER Douglas J, HASELL Tom. Macroporous sulfur polymers from a sodium chloride porogen—A low cost, versatile remediation material[J]. Environmental Science: Water Research & Technology, 2019, 5(12): 2142-2149. |
| 62 | JACOBS Leon J M, KEMMERE Maartje F, KEURENTJES Jos T F. Sustainable polymer foaming using high pressure carbon dioxide: A review on fundamentals, processes and applications[J]. Green Chemistry, 2008, 10(7): 731-738. |
| 63 | ABRAHAM Akhil Mammoottil, Vijay KUMAR S, ALHASSAN Saeed M. Porous sulphur copolymer for gas-phase mercury removal and thermal insulation[J]. Chemical Engineering Journal, 2018, 332: 1-7. |
| 64 | CROCKETT Michael P, EVANS Austin M, WORTHINGTON Max J H, et al. Sulfur-limonene polysulfide: A material synthesized entirely from industrial by-products and its use in removing toxic metals from water and soil[J]. Angewandte Chemie International Edition, 2016, 55(5): 1714-1718. |
| 65 | XU Yang, WANG Tianqi, HE Zidong, et al. A polymerization-cutting strategy: Self-protection synthesis of thiol-based nanoporous adsorbents for efficient mercury removal[J]. Chemistry—A European Journal, 2018, 24(54): 14436-14441. |
| 66 | WADI Vijay Kumar Shankarayya, JENA Kishore K, KHAWAJA Shahrukh Z, et al. NMR and EPR structural analysis and stability study of inverse vulcanized sulfur copolymers[J]. ACS Omega, 2018, 3(3): 3330-3339. |
| 67 | ZHAO Wanting, QIN Su, Lyu YA. Reverse vulcanization of monomers with conjugated bonds double and elemental sulfur for S-S bond self-healing properties[J]. Polymer Science, Series B, 2023, 65(6): 842-857. |
| 68 | AZEEM Babar, KUSHAARI KuZilati, MAN Zakaria B, et al. Review on materials & methods to produce controlled release coated urea fertilizer[J]. Journal of Controlled Release, 2014, 181: 11-21. |
| 69 | SHAVIV A, MIKKELSEN R L. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation—A review[J]. Fertilizer Research, 1993, 35(1): 1-12. |
| 70 | TIMILSENA Yakindra Prasad, ADHIKARI Raju, CASEY Phil, et al. Enhanced efficiency fertilisers: A review of formulation and nutrient release patterns[J]. Journal of the Science of Food and Agriculture, 2015, 95(6): 1131-1142. |
| 71 | Salmiaton ALI, DANAFAR Firoozeh. Controlled-release fertilizers: Advances and challenges[J]. Life Science Journal, 2015, 12(11): 33-45. |
| 72 | Juan CUBERO-CARDOSO, Patricia GÓMEZ‐VILLEGAS, María SANTOS-MARTÍN, et al. Combining vegetable oils and bioactive compounds via inverse vulcanization for antioxidant and antimicrobial materials[J]. Polymer Testing, 2022, 109: 107546. |
| 73 | DIAO Yan, XIE Kai, XIONG Shizhao, et al. Insights into Li-S battery cathode capacity fading mechanisms: Irreversible oxidation of active mass during cycling[J]. Journal of the Electrochemical Society, 2012, 159(11): A1816-A1821. |
| 74 | WANG Lei, WANG Dong, ZHANG Fengxing, et al. Interface chemistry guided long-cycle-life Li-S battery[J]. Nano Letters, 2013, 13(9): 4206-4211. |
| 75 | Iñaki GOMEZ, LEONET Olatz, Alberto BLAZQUEZ J, et al. Inverse vulcanization of sulfur using natural dienes as sustainable materials for lithium-sulfur batteries[J]. ChemSusChem, 2016, 9(24): 3419-3425. |
| [1] | XIE Mengmeng, LIU Jian, DANG Rui, LI Meixin, LIN Xiaoting, SU Zhou, WANG Jie. Preparation of ionic conductive hydrogels and its applications in flexible electronic [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3128-3144. |
| [2] | LIU Mengmeng, QIU Liewei, WAN Zhiwei, LI Shijing, XU Yuyu. Design principle and application of self-healing hydrogel [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1350-1362. |
| [3] | WANG Shaofan, ZHOU Ying, HAO Kang’an, HUANG Anrong, ZHANG Ruju, WU Chong, ZUO Xiaoling. Self-healing and blue-light hydrogel with pH responsiveness [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4837-4846. |
| [4] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
| [5] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
| [6] | XI Huimin, QIAN Kun, YU Kejing, LI Jie, ZHANG Zhongwei, XIONG Ziming, ZHANG Yaoliang. Preparation, modification and application of self-healing polyurethane elastomers based on disulfide and hydrogen bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 934-943. |
| [7] | ZHAO Yi, YANG Zhen, WANG Jia, LI Jingwen, ZHENG Yu. Research progress on molecular dynamics simulation of self-healing behavior of asphalt binder [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 803-813. |
| [8] | QIU Yijuan, LIN Jiawei, QIN Jirui, WU Jiayin, LIN Fengcai, LU Beili, TANG Lirong, HUANG Biao. Double dynamic covalent bond crosslinked nano-cellulose conductive hydrogel for a flexible sensor [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4406-4416. |
| [9] | MAO Ruiyun, DUAN Qinghua. Research progress of epoxy bio-oil in synthetic lubricating base oil [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 340-347. |
| [10] | LEI Yu, TIAN Mengmeng, ZHANG Xinya, JIANG Xiang. Research progress on the self-healing property and applications of superhydrophobic surfaces [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2624-2633. |
| [11] | Yulong WANG, Guosheng HU, Jingting ZHANG, Jingjing BAI, Qinniu LYU, Zhenzhong LI. Development of self-healing poly(urethane urea) with high performances based on the synergistic effect of disulfide bonds and hydrogen bonds [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 324-331. |
| [12] | Yan BAO, Jingxiang CHANG. Research progress of durable superhydrophobic surface [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5148-5160. |
| [13] | Ting LIANG, Zhenzhong FAN, Qingwang LIU, Jigang WANG, Li CAI, Yuanfeng FU, Qilei TONG. Research progress on the self-healing on superhydrophobic/superamphiphobic surface [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3185-3193. |
| [14] | TONG Xiaomei, HAO Qinqin, YAN Ziying, ZHENG Boxue. Preparation and application of epoxy resin self-healing microcapsules modified by silicone [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3555-3561. |
| [15] | WANG Haijing, DU Zexue, GAO Guoqiang. Preparation of biodiesel from vegetable oil by sub/supercritical alcoholysis [J]. Chemical Industry and Engineering Progress, 2017, 36(06): 2131-2136. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |