| [1] |
International Organization for Standardization Fine bubble technology-general principles for usage and measurement of fine bubbles—Part 1: Terminology: [S]. Switzerland: International Organization for Standardization, 2017.
|
| [2] |
李兆军, 杜浩. 我国微细气泡技术发展综述[J]. 过程工程学报, 2017, 17(4): 655-663.
|
|
LI Zhaojun, DU Hao. Review of the development of fine bubble technology in China[J]. The Chinese Journal of Process Engineering, 2017, 17(4): 655-663.
|
| [3] |
MARTÍN M, GALÁN M A, CERRO R L, et al. Shape oscillating bubbles: Hydrodynamics and mass transfer—A review[J]. Bubble Science, Engineering & Technology, 2011, 3(2): 48-63.
|
| [4] |
EAMRAT Rawintra, TSUTSUMI Yuya, et al. Microbubble application to enhance hydrogenotrophic denitrification for groundwater treatment[J]. The Environment and Natural Resources Journal, 2020, 18(2): 156-165.
|
| [5] |
BUDHIJANTO Wiratni, DEENDARLIANTO Deendarlianto, KRISTIYANI Heppy, et al. Enhancement of aerobic wastewater treatment by the application of attached growth microorganisms and microbubble generator[J]. International Journal of Technology, 2015, 6(7): 1101.
|
| [6] |
WANG Xinyan, SHUAI Yun, ZHOU Xiaorui, et al. Performance comparison of swirl-venturi bubble generator and conventional venturi bubble generator[J]. Chemical Engineering and Processing-Process Intensification, 2020, 154: 108022.
|
| [7] |
BIE Haiyan, LI Yunxia, XUE Licheng, et al. A visualized investigation of bubble breakup in a swirl-venturi bubble generator[J]. AIChE Journal, 2023, 69(3): e17892.
|
| [8] |
MAWARNI Drajat Indah, JUWANA Wibawa Endra, CATRAWEDARMA IGNB, et al. Statistical characterization of bubble breakup flow structures in swirl-type bubble generator systems[J]. ASEAN Journal of Chemical Engineering, 2023, 23(1): 62.
|
| [9] |
TANIWAKI M, HONDA S, UEDA K, et al. Interaction of two facing swirl-type micro-bubble generators[J]. Journal of Japan Society of Fluid Mechanics, 2008, 27(2): 133-141.
|
| [10] |
ALAM Hilman Syaeful, SUTIKNO Priyono, AHMAD FAUZI SOELAIMAN Tubagus, et al. Bulk Nanobubbles: Generation using a two-chamber swirling flow nozzle and long-term stability in water[J]. Journal of Flow Chemistry, 2022, 12(2): 161-173.
|
| [11] |
赵枫, 高哲, 崔政伟. 螺旋切割强化湿法烟气脱硫的传质动力学[J]. 环境工程学报, 2019, 13(3): 685-693.
|
|
ZHAO Feng, GAO Zhe, CUI Zhengwei. Mass transfer kinetics of wet flue gas desulfurization enhanced by spiral cutting[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 685-693.
|
| [12] |
KOGAWA Hiroyuki, NAOE Takashi, KYOTOH Harumichi, et al. Development of microbubble generator for suppression of pressure waves in mercury target of spallation source[J]. Journal of Nuclear Science and Technology, 2015, 52(12): 1461-1469.
|
| [13] |
KOGAWA H, HAGA K, NAOE T, et al. Development of bubble injection technique in JSNS mercury target[C]// Proceedings of 19th meeting on Collaboration of Advanced Neutron Sources (ICANS XIX), 2010.
|
| [14] |
SHIN Dong HO, Yeonghyeon GIM, SOHN Dong KEE, et al. Development of venturi-tube with spiral-shaped fin for water treatment[J]. Journal of Fluids Engineering, 2019, 141(5): 051303.
|
| [15] |
丁国栋, 陈家庆, 王春升, 等. 轴向旋流式微气泡发生器的结构设计与数值模拟[J]. 过程工程学报, 2018, 18(5): 934-941.
|
|
DING Guodong, CHEN Jiaqing, WANG Chunsheng, et al. Structural design and numerical simulation of axial-swirling type micro-bubble generator[J]. The Chinese Journal of Process Engineering, 2018, 18(5): 934-941.
|
| [16] |
WU Mian, YUAN Shiyan, SONG Haoyuan, et al. Micro-nano bubbles production using a swirling-type venturi bubble generator[J]. Chemical Engineering and Processing: Process Intensification, 2022, 170: 108697.
|
| [17] |
WU Mian, SONG Haoyuan, LIANG Xing, et al. Generation of micro-nano bubbles by self-developed swirl-type micro-nano bubble generator[J]. Chemical Engineering and Processing-Process Intensification, 2022, 181: 109136.
|
| [18] |
刘越伟. 新型文丘里气泡发生器的气泡尺寸和传质性能研究[D]. 北京: 北京化工大学, 2023.
|
|
LIU Yuewei. Study on bubble size and mass transfer performance of a new Venturi bubble generator[D]. Beijing: Beijing University of Chemical Technology, 2023.
|
| [19] |
WU Yuxue, CHEN Hang, SONG Xingfu. Microbubble dispersion process intensification using novel internal baffles[J]. Industrial & Engineering Chemistry Research, 2022, 61(38): 14284-14297.
|
| [20] |
WU Yuxue, CHEN Hang, SONG Xingfu. Experimental and numerical study on the bubble dynamics and flow field of a swirl flow microbubble generator with baffle internals[J]. Chemical Engineering Science, 2022, 263: 118066.
|
| [21] |
UEMATSU Hideto. Cavitation generating device and fluid mixing device using the device: US6830370[P]. 2004-12-14.
|
| [22] |
DING Guodong, CHEN Jiaqing, LI Zhenlin, et al. An investigation on the bubbly flow of a Venturi channel based on the population balance model[J]. The Canadian Journal of Chemical Engineering, 2022, 100(7): 1652-1664.
|
| [23] |
Beyer M, Szalinski L, Schleicher E, et al. Wire-mesh sensor data processing software[M]. User manual and software description, 2017.
|
| [24] |
VIEIRA Ronald E, KESANA Netaji R, TORRES Carlos F, et al. Experimental investigation of horizontal gas-liquid stratified and annular flow using wire-mesh sensor[J]. Journal of Fluids Engineering, 2014, 136(12): 121301.
|
| [25] |
NOOR Saffreena, KANEKO Akiko. The breakup characteristics of bubbles in Venturi tubes under different levels of dissolved gas[J]. Japanese Journal of Multiphase Flow, 2022, 36(3): 344-352.
|
| [26] |
QIU Facheng, LIU Zuohua, LIU Relong, et al. Gas-liquid mixing performance, power consumption, and local void fraction distribution in stirred tank reactors with a rigid-flexile impeller[J]. Experimental Thermal and Fluid Science, 2018, 97: 351-363.
|