Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2739-2759.DOI: 10.16085/j.issn.1000-6613.2023-1831
• Carbon dioxide capture and utilization • Previous Articles
MIAO Yihe1(), WANG Yaozu1, LIU Yuhang1, ZHU Xuancan2, LI Jia3, YU Lijun1()
Received:
2023-10-18
Revised:
2024-02-27
Online:
2024-06-15
Published:
2024-05-15
Contact:
YU Lijun
苗诒贺1(), 王耀祖1, 刘雨杭1, 朱炫灿2, 李佳3, 于立军1()
通讯作者:
于立军
作者简介:
苗诒贺(1993—),男,助理研究员,研究方向为吸附法二氧化碳捕集。E-mail:miaoyihe@sjtu.edu.cn。
基金资助:
CLC Number:
MIAO Yihe, WANG Yaozu, LIU Yuhang, ZHU Xuancan, LI Jia, YU Lijun. Research progress on the improving effect of additives on supported amine adsorbents for carbon capture[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2739-2759.
苗诒贺, 王耀祖, 刘雨杭, 朱炫灿, 李佳, 于立军. 添加剂改性固态胺吸附剂用于碳捕集的研究进展[J]. 化工进展, 2024, 43(5): 2739-2759.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1831
载体与模板剂 | 胺组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
SBA-15 | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.23 | NA | [ |
SBA-15+P123 | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.27 | NA | [ |
MCM-41 | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.27 | NA | [ |
MCM-41+CTAB | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 4.80 | NA | [ |
MCM-41+DTAB | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.50 | NA | [ |
PE -MCM-41 | 55% PEI | 纯CO2 | 75 | 75 | N2吹扫 | TGA | 约4.38 | NA | [ |
PE -MCM-41+CTAB | 55% PEI | 纯CO2 | 75 | 75 | N2吹扫 | TGA | 约10.06 | NA | [ |
KIT-1 | 50% TEPA | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 2.71 | 0.21 | [ |
KIT-1+CTAB | 50% TEPA | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 4.19 | 0.36 | [ |
KIT-1 | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.3 | 约0.18 | [ |
KIT-1+CTAB | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.1 | 约0.27 | [ |
MCM-48 | 40% PEI | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.16 | 0.22 | [ |
MCM-48+CTAB | 40% PEI | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.59 | 0.30 | [ |
MCM-48 | 40% PEI | 15% CO2/N2 | 50 | 100 | N2吹扫 | 固定床+质谱 | 1.01 | 0.10 | [ |
MCM-48+CTAB | 40% PEI | 15% CO2/N2 | 50 | 100 | N2吹扫 | 固定床+质谱 | 1.54 | 0.18 | [ |
MMSN | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 3.08 | 0.18 | [ |
MMSN+CTAC | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 4.55 | 0.25 | [ |
MMSN | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.4 | N/A | [ |
MMSN+CTAC | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约4.6 | N/A | [ |
MMSN | 50% TEPA | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | TGA | 约2.5 | N/A | [ |
MMSN+CTAC | 50% TEPA | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | TGA | 3.68 | N/A | [ |
MMON | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.46 | 0.20 | [ |
MMON+CTAC | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.78 | 0.22 | [ |
MMON+CTAC+BTES | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 4.04 | 0.33 | [ |
MMON | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.4 | N/A | [ |
MMON+CTAC | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.6 | N/A | [ |
MMON+CTAC+BTES | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.6 | N/A | [ |
载体与模板剂 | 胺组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
SBA-15 | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.23 | NA | [ |
SBA-15+P123 | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.27 | NA | [ |
MCM-41 | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.27 | NA | [ |
MCM-41+CTAB | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 4.80 | NA | [ |
MCM-41+DTAB | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.50 | NA | [ |
PE -MCM-41 | 55% PEI | 纯CO2 | 75 | 75 | N2吹扫 | TGA | 约4.38 | NA | [ |
PE -MCM-41+CTAB | 55% PEI | 纯CO2 | 75 | 75 | N2吹扫 | TGA | 约10.06 | NA | [ |
KIT-1 | 50% TEPA | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 2.71 | 0.21 | [ |
KIT-1+CTAB | 50% TEPA | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 4.19 | 0.36 | [ |
KIT-1 | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.3 | 约0.18 | [ |
KIT-1+CTAB | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.1 | 约0.27 | [ |
MCM-48 | 40% PEI | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.16 | 0.22 | [ |
MCM-48+CTAB | 40% PEI | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.59 | 0.30 | [ |
MCM-48 | 40% PEI | 15% CO2/N2 | 50 | 100 | N2吹扫 | 固定床+质谱 | 1.01 | 0.10 | [ |
MCM-48+CTAB | 40% PEI | 15% CO2/N2 | 50 | 100 | N2吹扫 | 固定床+质谱 | 1.54 | 0.18 | [ |
MMSN | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 3.08 | 0.18 | [ |
MMSN+CTAC | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 4.55 | 0.25 | [ |
MMSN | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.4 | N/A | [ |
MMSN+CTAC | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约4.6 | N/A | [ |
MMSN | 50% TEPA | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | TGA | 约2.5 | N/A | [ |
MMSN+CTAC | 50% TEPA | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | TGA | 3.68 | N/A | [ |
MMON | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.46 | 0.20 | [ |
MMON+CTAC | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.78 | 0.22 | [ |
MMON+CTAC+BTES | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 4.04 | 0.33 | [ |
MMON | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.4 | N/A | [ |
MMON+CTAC | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.6 | N/A | [ |
MMON+CTAC+BTES | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.6 | N/A | [ |
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
MCM-41 | 30% PEI | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 1.56 | N/A | [ |
30% PEI+20% PEG | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 1.75 | N/A | [ | |
SBA-15 | 30% PEI | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2 | 约0.27 | [ |
30% PEI+10% PEG200 | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2.68 | 约0.35 | [ | |
20% PEI | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约1.36 | 约0.29 | [ | |
20% PEI+20% PEG200 | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2.22 | 约0.43 | [ | |
40% PEI | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2.27 | 约0.27 | [ | |
SiO2 | 25% TEPA | 纯CO2 | 25 | 100 | 真空 | 固定床 | 1.23 | 0.18 | [ |
25% TEPA+25% PEG200 | 纯CO2 | 25 | 100 | 真空 | 固定床 | 2.44 | 0.37 | [ | |
25% TEPA+25% PEG600 | 纯CO2 | 25 | 100 | 真空 | 固定床 | 1.81 | 0.27 | [ | |
MSU-F | 70% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 4.17 | 0.23 | [ |
40% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.13 | 0.30 | [ | |
40% TEPA+30% PEG | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.32 | 0.31 | [ | |
SiO2 | TEPA | 15% CO2/Ar | 55 | 115 | Ar吹扫 | 固定床+质谱 | 2.09 | N/A | [ |
TEPA+PEG200 | 15% CO2/Ar | 55 | 115 | Ar吹扫 | 固定床+质谱 | 1.11 | N/A | [ | |
SiO2 | 40% PEI | 10% CO2/He | 25 | 95 | He吹扫 | 固定床+质谱 | 1.58 | N/A | [ |
36% PEI+4% PEG200 | 10% CO2/He | 25 | 95 | He吹扫 | 固定床+质谱 | 1.46 | N/A | [ | |
多孔SiO2 | 30% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.89 | 约0.25 | [ |
40% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.81 | 约0.26 | [ | |
50% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.42 | 约0.11 | [ | |
30% TEPA+20%PEG4000 | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.78 | 约0.24 | [ | |
30% TEPA+20% PEG400 | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.5 | 约0.34 | [ | |
多孔氧化硅(HPS) | 65% PEI | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 3.93 | N/A | [ |
65% PEI+5% DTAB | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.32 | N/A | [ | |
65% PEI+5% CTAB | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.35 | N/A | [ | |
65% PEI+5% SATB | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.59 | N/A | [ | |
65% PEI+ 5% SDBS | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.39 | N/A | [ | |
65% PEI+ 5% SDS | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.20 | N/A | [ | |
65% PEI+ 5% PC | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.37 | N/A | [ | |
65% PEI+ 5% F127 | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.36 | N/A | [ | |
65% PEI+ 5% P123 | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.24 | N/A | [ | |
65% PEI+ 5% Span80 | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.61 | N/A | [ | |
介孔碳 | 60% PEI | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 3.82 | N/A | [ |
60% PEI+5% DTAB | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.35 | N/A | [ | |
60% PEI+5% CTAB | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.32 | N/A | [ | |
60% PEI+5% SATB | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.20 | N/A | [ | |
60% PEI+5% SDS | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 4.67 | N/A | [ | |
60% PEI+5% PC | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.32 | N/A | [ | |
60% PEI+5% Span 80 | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.35 | N/A | [ | |
60% PEI+5% F127 | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.35 | N/A | [ | |
60% PEI+5% X100 | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.13 | N/A | [ | |
介孔碳 | 50% PEI(Mn≈10000) | 15% CO2/ N2 | 75 | 110 | N2吹扫 | TGA | 约2.39 | N/A | [ |
50% PEI(Mn≈10000)+ 20% PEG(Mn≈6000) | 15% CO2/ N2 | 75 | 110 | N2吹扫 | TGA | 约3.07 | N/A | [ | |
树脂 (HP2MGL) | 50% PEI | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.13 | N/A | [ |
50% PEI+5% Span 80 | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.81 | N/A | [ | |
50% PEI+5% CTAB | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.82 | N/A | [ | |
50% PEI+5% PEG | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.64 | N/A | [ | |
50% PEI | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.90 | N/A | [ | |
50% PEI+5% Span 80 | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.08 | N/A | [ | |
50% PEI+5% CTAB | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.08 | N/A | [ | |
50% PEI+5% PEG | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.99 | N/A | [ | |
介孔碳 | 55% PEI | 0.5% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 2.53 | NA | [ |
55% PEI+ 5% Span 80 | 0.5% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 3.34 | NA | [ | |
55% PEI | 0.04% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 约1.5 | NA | [ | |
55% PEI+ 5% Span 80 | 0.04% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 2.25 | NA | [ | |
SBA-15 | PEI | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.63 | 0.10 | [ |
PEI+CTAB | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.55 | 0.10 | [ | |
PEI+PEG200 | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.73 | 0.10 | [ | |
PEI+PEG1000 | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.71 | 0.10 | [ | |
SBA-15 | 40% TEPA | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.74 | 0.17 | [ |
40% TEPA+10% PEG200 | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 2.03 | 0.22 | [ | |
40% TEPA+10% P123 | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.60 | 0.18 | [ | |
40% TEPA+10% Span80 | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.42 | 0.17 | [ | |
40% TEPA+10% SDS | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.52 | 0.17 | [ | |
40% TEPA+10% CTAB | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.39 | 0.15 | [ | |
40% TEPA+10% PC | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.56 | 1.75 | [ | |
SBA-15 | 45% PEI | 9.5% CO2/ N2 | 75 | 105 | N2吹扫 | 固定床+CO2分析仪 | 约1.80 | 约0.17 | [ |
45% PEI+5% TEP | 9.5% CO2/ N2 | 75 | 105 | N2吹扫 | 固定床+CO2分析仪 | 约1.90 | 约0.20 | [ | |
45% PEI+5% BEP | 9.5% CO2/ N2 | 75 | 105 | N2吹扫 | 固定床+CO2分析仪 | 约1.70 | NA | [ |
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
MCM-41 | 30% PEI | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 1.56 | N/A | [ |
30% PEI+20% PEG | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 1.75 | N/A | [ | |
SBA-15 | 30% PEI | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2 | 约0.27 | [ |
30% PEI+10% PEG200 | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2.68 | 约0.35 | [ | |
20% PEI | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约1.36 | 约0.29 | [ | |
20% PEI+20% PEG200 | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2.22 | 约0.43 | [ | |
40% PEI | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2.27 | 约0.27 | [ | |
SiO2 | 25% TEPA | 纯CO2 | 25 | 100 | 真空 | 固定床 | 1.23 | 0.18 | [ |
25% TEPA+25% PEG200 | 纯CO2 | 25 | 100 | 真空 | 固定床 | 2.44 | 0.37 | [ | |
25% TEPA+25% PEG600 | 纯CO2 | 25 | 100 | 真空 | 固定床 | 1.81 | 0.27 | [ | |
MSU-F | 70% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 4.17 | 0.23 | [ |
40% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.13 | 0.30 | [ | |
40% TEPA+30% PEG | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.32 | 0.31 | [ | |
SiO2 | TEPA | 15% CO2/Ar | 55 | 115 | Ar吹扫 | 固定床+质谱 | 2.09 | N/A | [ |
TEPA+PEG200 | 15% CO2/Ar | 55 | 115 | Ar吹扫 | 固定床+质谱 | 1.11 | N/A | [ | |
SiO2 | 40% PEI | 10% CO2/He | 25 | 95 | He吹扫 | 固定床+质谱 | 1.58 | N/A | [ |
36% PEI+4% PEG200 | 10% CO2/He | 25 | 95 | He吹扫 | 固定床+质谱 | 1.46 | N/A | [ | |
多孔SiO2 | 30% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.89 | 约0.25 | [ |
40% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.81 | 约0.26 | [ | |
50% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.42 | 约0.11 | [ | |
30% TEPA+20%PEG4000 | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.78 | 约0.24 | [ | |
30% TEPA+20% PEG400 | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.5 | 约0.34 | [ | |
多孔氧化硅(HPS) | 65% PEI | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 3.93 | N/A | [ |
65% PEI+5% DTAB | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.32 | N/A | [ | |
65% PEI+5% CTAB | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.35 | N/A | [ | |
65% PEI+5% SATB | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.59 | N/A | [ | |
65% PEI+ 5% SDBS | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.39 | N/A | [ | |
65% PEI+ 5% SDS | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.20 | N/A | [ | |
65% PEI+ 5% PC | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.37 | N/A | [ | |
65% PEI+ 5% F127 | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.36 | N/A | [ | |
65% PEI+ 5% P123 | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.24 | N/A | [ | |
65% PEI+ 5% Span80 | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.61 | N/A | [ | |
介孔碳 | 60% PEI | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 3.82 | N/A | [ |
60% PEI+5% DTAB | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.35 | N/A | [ | |
60% PEI+5% CTAB | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.32 | N/A | [ | |
60% PEI+5% SATB | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.20 | N/A | [ | |
60% PEI+5% SDS | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 4.67 | N/A | [ | |
60% PEI+5% PC | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.32 | N/A | [ | |
60% PEI+5% Span 80 | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.35 | N/A | [ | |
60% PEI+5% F127 | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.35 | N/A | [ | |
60% PEI+5% X100 | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.13 | N/A | [ | |
介孔碳 | 50% PEI(Mn≈10000) | 15% CO2/ N2 | 75 | 110 | N2吹扫 | TGA | 约2.39 | N/A | [ |
50% PEI(Mn≈10000)+ 20% PEG(Mn≈6000) | 15% CO2/ N2 | 75 | 110 | N2吹扫 | TGA | 约3.07 | N/A | [ | |
树脂 (HP2MGL) | 50% PEI | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.13 | N/A | [ |
50% PEI+5% Span 80 | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.81 | N/A | [ | |
50% PEI+5% CTAB | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.82 | N/A | [ | |
50% PEI+5% PEG | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.64 | N/A | [ | |
50% PEI | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.90 | N/A | [ | |
50% PEI+5% Span 80 | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.08 | N/A | [ | |
50% PEI+5% CTAB | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.08 | N/A | [ | |
50% PEI+5% PEG | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.99 | N/A | [ | |
介孔碳 | 55% PEI | 0.5% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 2.53 | NA | [ |
55% PEI+ 5% Span 80 | 0.5% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 3.34 | NA | [ | |
55% PEI | 0.04% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 约1.5 | NA | [ | |
55% PEI+ 5% Span 80 | 0.04% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 2.25 | NA | [ | |
SBA-15 | PEI | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.63 | 0.10 | [ |
PEI+CTAB | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.55 | 0.10 | [ | |
PEI+PEG200 | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.73 | 0.10 | [ | |
PEI+PEG1000 | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.71 | 0.10 | [ | |
SBA-15 | 40% TEPA | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.74 | 0.17 | [ |
40% TEPA+10% PEG200 | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 2.03 | 0.22 | [ | |
40% TEPA+10% P123 | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.60 | 0.18 | [ | |
40% TEPA+10% Span80 | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.42 | 0.17 | [ | |
40% TEPA+10% SDS | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.52 | 0.17 | [ | |
40% TEPA+10% CTAB | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.39 | 0.15 | [ | |
40% TEPA+10% PC | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.56 | 1.75 | [ | |
SBA-15 | 45% PEI | 9.5% CO2/ N2 | 75 | 105 | N2吹扫 | 固定床+CO2分析仪 | 约1.80 | 约0.17 | [ |
45% PEI+5% TEP | 9.5% CO2/ N2 | 75 | 105 | N2吹扫 | 固定床+CO2分析仪 | 约1.90 | 约0.20 | [ | |
45% PEI+5% BEP | 9.5% CO2/ N2 | 75 | 105 | N2吹扫 | 固定床+CO2分析仪 | 约1.70 | NA | [ |
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率(CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
SBA-15 | 50% TEPA | 99.999% CO2 | 75 | 100 | N/A | 固定床+气相色谱 | 3.23 | 约0.8 | [ |
30% TEPA+20% DEA | 99.999% CO2 | 75 | 100 | N/A | 固定床+气相色谱 | 3.70 | 约0.93 | [ | |
MSU-F | 40% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.13 | 0.30 | [ |
70% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 4.17 | 0.23 | [ | |
70% DEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.38 | 0.51 | [ | |
40% TEPA+30% DEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 5.62 | 0.42 | [ | |
40% TEPA+30% DEAP | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 5.13 | 0.41 | [ | |
40% TEPA+30% MEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.64 | 0.24 | [ | |
40% TEPA+30% TEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 4.89 | 0.39 | [ | |
多孔SiO2 | 30% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.89 | 约0.25 | [ |
50% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.42 | 约0.11 | [ | |
30% TEPA+20% MEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.74 | 约0.25 | [ | |
30% TEPA+20% DEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 3.75 | 约0.39 | [ | |
30% TEPA+20% TEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 3.25 | 约0.36 | [ | |
30% TEPA+20% AMP | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.58 | 约0.26 | [ | |
30%TEPA+20%AEEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.89 | 约0.25 | [ | |
SBA-15 | 40% TEPA | 0.04% CO2 | 25 | 80 | N/A | TGA | 1.74 | 0.18 | [ |
40% TEPA+10% DEA | 0.04% CO2 | 25 | 80 | N/A | TGA | 2.24 | 0.22 | [ | |
SBA-15 | 50% PEI | 0.04% CO2 | 25 | 90 | N/A | TGA | 1.11 | 0.1 | [ |
25% PEI+25% DEA | 0.04% CO2 | 25 | 90 | N/A | TGA | 1.62 | 0.2 | [ | |
MCM-41 | 60% TEPA | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 2.45 | NA | [ |
30% TEPA+30% AMP | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 3.01 | NA | [ |
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率(CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
SBA-15 | 50% TEPA | 99.999% CO2 | 75 | 100 | N/A | 固定床+气相色谱 | 3.23 | 约0.8 | [ |
30% TEPA+20% DEA | 99.999% CO2 | 75 | 100 | N/A | 固定床+气相色谱 | 3.70 | 约0.93 | [ | |
MSU-F | 40% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.13 | 0.30 | [ |
70% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 4.17 | 0.23 | [ | |
70% DEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.38 | 0.51 | [ | |
40% TEPA+30% DEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 5.62 | 0.42 | [ | |
40% TEPA+30% DEAP | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 5.13 | 0.41 | [ | |
40% TEPA+30% MEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.64 | 0.24 | [ | |
40% TEPA+30% TEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 4.89 | 0.39 | [ | |
多孔SiO2 | 30% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.89 | 约0.25 | [ |
50% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.42 | 约0.11 | [ | |
30% TEPA+20% MEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.74 | 约0.25 | [ | |
30% TEPA+20% DEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 3.75 | 约0.39 | [ | |
30% TEPA+20% TEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 3.25 | 约0.36 | [ | |
30% TEPA+20% AMP | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.58 | 约0.26 | [ | |
30%TEPA+20%AEEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.89 | 约0.25 | [ | |
SBA-15 | 40% TEPA | 0.04% CO2 | 25 | 80 | N/A | TGA | 1.74 | 0.18 | [ |
40% TEPA+10% DEA | 0.04% CO2 | 25 | 80 | N/A | TGA | 2.24 | 0.22 | [ | |
SBA-15 | 50% PEI | 0.04% CO2 | 25 | 90 | N/A | TGA | 1.11 | 0.1 | [ |
25% PEI+25% DEA | 0.04% CO2 | 25 | 90 | N/A | TGA | 1.62 | 0.2 | [ | |
MCM-41 | 60% TEPA | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 2.45 | NA | [ |
30% TEPA+30% AMP | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 3.01 | NA | [ |
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
多孔氧化硅 | 50% PEI | 0.04% CO2/Ar | 25 | 110 | Ar吹扫 | TGA | 2.36 | 0.22 | [ |
50% PEI+APTES | 0.04% CO2/Ar | 25 | 110 | Ar吹扫 | TGA | 2.26 | 0.21 | [ | |
氧化硅 | 50% PEI | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 3.2 | 0.29 | [ |
35% PEI+15% APTES | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 2.9 | 0.33 | [ | |
25% PEI+25% APTES | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 2.8 | 0.37 | [ | |
15% PEI+35% APTES | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 2.2 | 0.37 | [ | |
MCF | 70% PEI | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约0.8 | 约0.06 | [ |
50% PEI+20% APTMS | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.3 | 0.12 | [ | |
氧化硅 | 40% PEI800 | 85% CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.81 | 0.45 | [ |
12% PEI800+28% TMPED | 85% CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.1 | 0.46 | [ | |
20% PEI800+20% TMPED | 85% CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.5 | 0.5 | [ | |
28% PEI800+12% TMPED | 85%CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.81 | 0.5 | [ | |
40% PEI2000 | 83%CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.7 | N/A | [ | |
20% PEI2000+20% TMPED | 83%CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.4 | N/A | [ | |
孔增大SBA-15 | 30% TEPA | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 2.16 | 0.32 | [ |
30% (TEPA+APTMS) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 3.16 | 0.40 | [ | |
30% (TEPA+DT) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 3.89 | 0.42 | [ | |
50% TEPA | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 3.73 | 0.37 | [ | |
50% (TEPA+APTMS) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 4.89 | 0.45 | [ | |
30% PEI | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 1.83 | 0.28 | [ | |
30% (PEI+APTMS) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 2.53 | 0.33 | [ | |
MCM-41 | 60% TEPA | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 2.45 | NA | [ |
30% APTES+40% TEPA | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 3.45 | NA | [ |
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
多孔氧化硅 | 50% PEI | 0.04% CO2/Ar | 25 | 110 | Ar吹扫 | TGA | 2.36 | 0.22 | [ |
50% PEI+APTES | 0.04% CO2/Ar | 25 | 110 | Ar吹扫 | TGA | 2.26 | 0.21 | [ | |
氧化硅 | 50% PEI | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 3.2 | 0.29 | [ |
35% PEI+15% APTES | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 2.9 | 0.33 | [ | |
25% PEI+25% APTES | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 2.8 | 0.37 | [ | |
15% PEI+35% APTES | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 2.2 | 0.37 | [ | |
MCF | 70% PEI | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约0.8 | 约0.06 | [ |
50% PEI+20% APTMS | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.3 | 0.12 | [ | |
氧化硅 | 40% PEI800 | 85% CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.81 | 0.45 | [ |
12% PEI800+28% TMPED | 85% CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.1 | 0.46 | [ | |
20% PEI800+20% TMPED | 85% CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.5 | 0.5 | [ | |
28% PEI800+12% TMPED | 85%CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.81 | 0.5 | [ | |
40% PEI2000 | 83%CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.7 | N/A | [ | |
20% PEI2000+20% TMPED | 83%CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.4 | N/A | [ | |
孔增大SBA-15 | 30% TEPA | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 2.16 | 0.32 | [ |
30% (TEPA+APTMS) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 3.16 | 0.40 | [ | |
30% (TEPA+DT) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 3.89 | 0.42 | [ | |
50% TEPA | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 3.73 | 0.37 | [ | |
50% (TEPA+APTMS) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 4.89 | 0.45 | [ | |
30% PEI | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 1.83 | 0.28 | [ | |
30% (PEI+APTMS) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 2.53 | 0.33 | [ | |
MCM-41 | 60% TEPA | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 2.45 | NA | [ |
30% APTES+40% TEPA | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 3.45 | NA | [ |
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
MSU-F | 70% TEPA | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 4.17 | 0.23 | [ |
40% TEPA+30% PZ | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 3.61 | NA | [ | |
40% TEPA+30% DBU | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 3.73 | NA | [ | |
40% TEPA+30% PEI | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 3.50 | NA | [ | |
硅胶 | 45% PEI | 10% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.80 | NA | [ |
45% PEI+5% PZ | 10% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.18 | NA | [ | |
MSU-F | 70% TEPA | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 4.17 | 0.24 | [ |
40% TEPA+30% 4MIm | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 4.88 | 0.46 | [ | |
MCF | 70% PEI | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约0.8 | 约0.06 | [ |
50% PEI+20% DETA | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.3 | 0.11 | [ |
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
MSU-F | 70% TEPA | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 4.17 | 0.23 | [ |
40% TEPA+30% PZ | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 3.61 | NA | [ | |
40% TEPA+30% DBU | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 3.73 | NA | [ | |
40% TEPA+30% PEI | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 3.50 | NA | [ | |
硅胶 | 45% PEI | 10% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.80 | NA | [ |
45% PEI+5% PZ | 10% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.18 | NA | [ | |
MSU-F | 70% TEPA | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 4.17 | 0.24 | [ |
40% TEPA+30% 4MIm | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 4.88 | 0.46 | [ | |
MCF | 70% PEI | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约0.8 | 约0.06 | [ |
50% PEI+20% DETA | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.3 | 0.11 | [ |
载体 | 胺+添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附 方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
气相氧化硅 | 40% PEI | 15% CO2/He | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.38 | 约0.26 | [ |
40% PEI+ 6% K2CO3 | 15% CO2/He | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.64 | 约0.28 | [ | |
40% PEI | 15% CO2, 4.5% O2/N2 | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.07 | 约0.26 | [ | |
40% PEI+ 6% K2CO3 | 15% CO2, 4.5% O2/ N2 | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.75 | 约0.30 | [ | |
40% PEI | 15% CO2, 4.5% O2/N2+3% H2O | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.36 | 约0.26 | [ | |
40% PEI+ 6% K2CO3 | 15% CO2, 4.5% O2/N2+3% H2O | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.75 | 约0.30 | [ | |
SBA-15 | 50% TEPA | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 4.81 | 0.36 | [ |
+4.5% NaNO3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 6.28 | NA | [ | |
+4.5% KNO3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 6.24 | NA | [ | |
+4.5% Zr(NO3)4 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 6.10 | NA | [ | |
+4.5% Al(NO3)3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 约4.9 | NA | [ | |
+4.5% Ca(NO3)3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 约4.0 | NA | [ | |
+4.5% Mg(NO3)2 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 约4.0 | NA | [ |
载体 | 胺+添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附 方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
气相氧化硅 | 40% PEI | 15% CO2/He | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.38 | 约0.26 | [ |
40% PEI+ 6% K2CO3 | 15% CO2/He | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.64 | 约0.28 | [ | |
40% PEI | 15% CO2, 4.5% O2/N2 | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.07 | 约0.26 | [ | |
40% PEI+ 6% K2CO3 | 15% CO2, 4.5% O2/ N2 | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.75 | 约0.30 | [ | |
40% PEI | 15% CO2, 4.5% O2/N2+3% H2O | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.36 | 约0.26 | [ | |
40% PEI+ 6% K2CO3 | 15% CO2, 4.5% O2/N2+3% H2O | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.75 | 约0.30 | [ | |
SBA-15 | 50% TEPA | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 4.81 | 0.36 | [ |
+4.5% NaNO3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 6.28 | NA | [ | |
+4.5% KNO3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 6.24 | NA | [ | |
+4.5% Zr(NO3)4 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 6.10 | NA | [ | |
+4.5% Al(NO3)3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 约4.9 | NA | [ | |
+4.5% Ca(NO3)3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 约4.0 | NA | [ | |
+4.5% Mg(NO3)2 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 约4.0 | NA | [ |
载体 | 胺+添加剂组分 | 氧化条件 | 吸附条件 | 脱附条件 | 氧化稳定性评价 | 参考文献 |
---|---|---|---|---|---|---|
二氧化硅微球 | 50% PEI(MW≈1200) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失81% | [ |
50% (0.15 EB+PEI) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失44% | [ | |
50% (0.37 EB+PEI) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失20% | [ | |
50% (0.54 EB+PEI) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失19% | [ | |
二氧化硅微球 | 50% PEI (MW≈1200) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失52% | [ |
50% (0.37 EB+PEI) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失23% | [ | |
氧化硅 (Sipernat 50S) | 50% TEPA | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量损失约90% | [ |
TEPA-PO-1-2 (39% TEPA+22% PO) | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量分别损失16%(55℃),18%(85℃) | [ | |
50% PEHA | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量损失约90% | [ | |
PEHA-PO-1-2 (39% TEPA+22% PO) | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量分别损失16%(55℃),18%(85℃) | [ |
载体 | 胺+添加剂组分 | 氧化条件 | 吸附条件 | 脱附条件 | 氧化稳定性评价 | 参考文献 |
---|---|---|---|---|---|---|
二氧化硅微球 | 50% PEI(MW≈1200) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失81% | [ |
50% (0.15 EB+PEI) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失44% | [ | |
50% (0.37 EB+PEI) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失20% | [ | |
50% (0.54 EB+PEI) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失19% | [ | |
二氧化硅微球 | 50% PEI (MW≈1200) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失52% | [ |
50% (0.37 EB+PEI) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失23% | [ | |
氧化硅 (Sipernat 50S) | 50% TEPA | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量损失约90% | [ |
TEPA-PO-1-2 (39% TEPA+22% PO) | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量分别损失16%(55℃),18%(85℃) | [ | |
50% PEHA | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量损失约90% | [ | |
PEHA-PO-1-2 (39% TEPA+22% PO) | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量分别损失16%(55℃),18%(85℃) | [ |
载体 | 胺+添加剂组分 | 氧化条件 | 吸附条件 | 脱附条件 | 氧化稳定性 评价 | 参考 文献 |
---|---|---|---|---|---|---|
二氧化硅微球 | 50% PEI(MW≈1200) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失52% | [ |
50%(0.37 EB+PEI) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失23% | [ | |
2% Na3PO4+50% PEI | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约10% | [ | |
2% Na3PO4+50%(0.37 EB+PEI) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约4% | [ | |
50% PEI(MW≈1200) | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约100% | [ | |
50%(0.37 EB+PEI) | 模拟烟气(15% CO2,3% O2,and 10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约80% | [ | |
2% Na3PO4+50% PEI | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约80% | [ | |
2% Na3PO4+50%(0.37 EB+PEI) | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约8.5% | [ | |
二氧化硅微球 | 0.2mmol/g TEAH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约1% | [ |
0.2mmol/g TMAH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约2% | [ | |
0.2mmol/g NaH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约10% | [ | |
0.2mmol/g LiH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约15% | [ | |
0.2mmol/g TEAH2PO4+50% (EB+PEI) | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约14% | [ |
载体 | 胺+添加剂组分 | 氧化条件 | 吸附条件 | 脱附条件 | 氧化稳定性 评价 | 参考 文献 |
---|---|---|---|---|---|---|
二氧化硅微球 | 50% PEI(MW≈1200) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失52% | [ |
50%(0.37 EB+PEI) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失23% | [ | |
2% Na3PO4+50% PEI | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约10% | [ | |
2% Na3PO4+50%(0.37 EB+PEI) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约4% | [ | |
50% PEI(MW≈1200) | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约100% | [ | |
50%(0.37 EB+PEI) | 模拟烟气(15% CO2,3% O2,and 10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约80% | [ | |
2% Na3PO4+50% PEI | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约80% | [ | |
2% Na3PO4+50%(0.37 EB+PEI) | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约8.5% | [ | |
二氧化硅微球 | 0.2mmol/g TEAH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约1% | [ |
0.2mmol/g TMAH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约2% | [ | |
0.2mmol/g NaH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约10% | [ | |
0.2mmol/g LiH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约15% | [ | |
0.2mmol/g TEAH2PO4+50% (EB+PEI) | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约14% | [ |
载体 | 胺 | 氧化条件 | 吸附条件 | 脱附条件 | 氧化稳定性评价 | 参考 文献 |
---|---|---|---|---|---|---|
MSU-F | 30% TEPA | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为54%(18h),79%(42h) | [ |
30% TEPA+5% TDE | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为约18%(18h),60%(42h) | [ | |
30% TEPA+5% HEDS | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为约30%(18h),70%(42h) | [ | |
30% TEPA+5% DTDP | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为约25%(18h),60%(42h) | [ | |
MSU-F | 30% PEI (Mn≈1200) | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近60% | [ |
30% PEI+5% TDE | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近40% | [ | |
30% PEI+5% HEDS | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近30% | [ | |
30% PEI+5% DTDP | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近25% | [ |
载体 | 胺 | 氧化条件 | 吸附条件 | 脱附条件 | 氧化稳定性评价 | 参考 文献 |
---|---|---|---|---|---|---|
MSU-F | 30% TEPA | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为54%(18h),79%(42h) | [ |
30% TEPA+5% TDE | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为约18%(18h),60%(42h) | [ | |
30% TEPA+5% HEDS | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为约30%(18h),70%(42h) | [ | |
30% TEPA+5% DTDP | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为约25%(18h),60%(42h) | [ | |
MSU-F | 30% PEI (Mn≈1200) | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近60% | [ |
30% PEI+5% TDE | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近40% | [ | |
30% PEI+5% HEDS | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近30% | [ | |
30% PEI+5% DTDP | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近25% | [ |
1 | International Energy Agency. Net zero by 2050—A roadmap for the global energy sector[R]. Paris, IEA, 2021. |
2 | 张贤, 杨晓亮, 鲁玺, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京, 中国21世纪议程管理中心,全球碳捕集与封存研究院,清华大学, 2023. |
ZHANG Xian, YANG Xiaoliang, Lu Xi, et al. CCUS progress in China—A status report (2023)[R]. Beijing, The Administrative Center for China’s Agenda 21, Global CCS Institute, Tsinghua University, 2023. | |
3 | 张贤, 李凯, 马乔,等. 碳中和目标下CCUS技术发展定位与展望[J]. 中国人口·资源与环境, 2021, 31(9): 29-33. |
ZHANG Xian, LI Kai, MA Qiao, et al. Orientation and prospect of CCUS development under carbon neutrality target[J]. China Population, Resources and Environment, 2021, 31(9): 29-33. | |
4 | CUI Qingru, ZHAO Rui, WANG Tiankun, et al. A 150000t·a-1 post-combustion carbon capture and storage demonstration project for coal-fired power plants[J]. Engineering, 2022, 14: 22-26. |
5 | Mai BUI, ADJIMAN Claire S, BARDOW André, et al. Carbon capture and storage (CCS): The way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. |
6 | GAO Wanlin, LIANG Shuyu, WANG Rujie, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686. |
7 | KIM Chaehoon, Yejee HA, CHOI Minkee. Design of amine-containing nanoporous materials for postcombustion CO2 capture from engineering perspectives[J]. Accounts of Chemical Research, 2023, 56(21): 2887-2897 |
8 | SHI Xiaoyang, XIAO Hang, AZARABADI Habib, et al. Sorbents for the direct capture of CO2 from ambient air[J]. Angewandte Chemie (International Ed in English), 2020, 59(18): 6984-7006. |
9 | 廖昌建, 张可伟, 王晶,等. 直接空气捕集二氧化碳技术研究进展[J]. 化工进展, 2023: 1-19. |
LIAO Changjian, ZHANG Kewei, WANG Jing, et al. Progress on direct air capture of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2023: 1-19. | |
10 | ZHU Xuancan, XIE Wenwen, WU Junye, et al. Recent advances in direct air capture by adsorption[J]. Chemical Society Reviews, 2022, 51(15): 6574-6651. |
11 | 朱炫灿, 葛天舒, 吴俊晔,等. 吸附法碳捕集技术的规模化应用和挑战[J]. 科学通报, 2021, 66(22): 2861-2877. |
ZHU Xuancan, GE Tianshu, WU Junye, et al. Large-scale applications and challenges of adsorption-based carbon capture technologies[J]. Chinese Science Bulletin, 2021, 66(22): 2861-2877. | |
12 | 宋珂琛,崔希利,邢华斌. 二氧化碳直接空气捕集材料与技术研究进展[J]. 化工进展, 2022, 41(3): 1152-1162. |
SONG Kechen, CUI Xili, XING Huabin. Progress on direct air capture of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1152-1162. | |
13 | DIDAS Stephanie A, CHOI Sunho, CHAIKITTISILP Watcharop, et al. Amine-oxide hybrid materials for CO2 capture from ambient air[J]. Accounts of Chemical Research, 2015, 48(10): 2680-2687. |
14 | 王一茹, 宋小三, 水博阳,等. 胺功能化介孔二氧化硅捕集CO2的研究进展[J]. 化工进展, 2022, 41(S1): 536-544. |
WANG Yiru, SONG Xiaosan, SHUI Boyang, et al. Progress in amine-functionalized mesoporous silica for CO2 capture[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 536-544. | |
15 | KUMAR Dharam Raj, ROSU Cornelia, SUJAN Achintya R, et al. Alkyl-aryl amine-rich molecules for CO2 removal via direct air capture[J]. ACS Sustainable Chemistry & Engineering, 2020: acssuschemeng.0c03706. |
16 | SUJAN Achintya R, KUMAR Dharam Raj, Miles SAKWA-NOVAK, et al. Poly(glycidyl amine)-loaded SBA-15 sorbents for CO2 capture from dilute and ultradilute gas mixtures[J]. ACS Applied Polymer Materials, 2019, 1(11): 3137-3147. |
17 | SANZ-PÉREZ Eloy S, MURDOCK Christopher R, DIDAS Stephanie A, et al. Direct capture of CO2 from ambient air[J]. Chemical Reviews, 2016, 116(19): 11840-11876. |
18 | SRIKANTH Chakravartula S, CHUANG Steven S C. Spectroscopic investigation into oxidative degradation of silica-supported amine sorbents for CO2 capture[J]. ChemSusChem, 2012, 5(8): 1435-1442. |
19 | YUE M B, CHUN Y, CAO Y, et al. CO2 capture by as-prepared SBA-15 with an occluded organic template[J]. Advanced Functional Materials, 2006, 16(13): 1717-1722. |
20 | ZHANG Guojie, ZHAO Peiyu, HAO Lanxia, et al. Amine-modified SBA-15(P): A promising adsorbent for CO2 capture[J]. Journal of CO2 Utilization, 2018, 24: 22-33. |
21 | YUE Mingbo, SUN Linbing, CAO Yi, et al. Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine[J]. Chemistry: A European Journal, 2008, 14(11): 3442-3451. |
22 | Aliakbar HEYDARI-GORJI, BELMABKHOUT Youssef, SAYARI Abdelhamid. Polyethylenimine-impregnated mesoporous silica: Effect of amine loading and surface alkyl chains on CO2 adsorption[J]. Langmuir, 2011, 27(20): 12411-12416. |
23 | HAN Yu, BAI Gaozhi, YANG Junhao, et al. Facile improvement of amine dispersion in KIT-1 with the alkyl chains template for enhanced CO2 adsorption capacity[J]. Journal of Solid State Chemistry, 2020, 290: 121531. |
24 | QIAN Xingchi, YANG Junhao, FEI Zhaoyang, et al. A simple strategy to improve PEI dispersion on MCM-48 with long-alkyl chains template for efficient CO2 adsorption[J]. Industrial & Engineering Chemistry Research, 2019, 58(25): 10975-10983. |
25 | QI Luming, HAN Yu, BAI Gaozhi, et al. Role of brush-like additives in CO2 adsorbents for the enhancement of amine efficiency[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106709. |
26 | QI Luming, YANG Wanyong, ZHANG Linlin, et al. Reinforced CO2 capture on amine-impregnated organosilica with double brush-like additives modified[J]. Industrial & Engineering Chemistry Research, 2022, 61(40): 14859-14867. |
27 | XU Xiaochun, SONG Chunshan, ANDRÉSEN John M, et al. Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41[J]. Microporous and Mesoporous Materials, 2003, 62(1/2): 29-45. |
28 | ZHANG Lin, WANG Xiaoxing, FUJII Mamoru, et al. CO2 capture over molecular basket sorbents: Effects of SiO2 supports and PEG additive[J]. Journal of Energy Chemistry, 2017, 26(5): 1030-1038. |
29 | TANTHANA Jak, CHUANG Steven S C. In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO2 capture[J]. ChemSusChem, 2010, 3(8): 957-964. |
30 | MILLER Duane D, CHUANG Steven S C. Control of CO2 adsorption and desorption using polyethylene glycol in a tetraethylenepentamine thin film: An in situ ATR and theoretical study[J]. The Journal of Physical Chemistry C, 2016, 120(44): 25489-25504. |
31 | WANG Linxi, Mohammed AL-AUFI, PACHECO Carlos N, et al. Polyethylene glycol (PEG) addition to polyethylenimine (PEI)-impregnated silica increases amine accessibility during CO2 sorption[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14785-14795. |
32 | WANG Jitong, LONG Donghui, ZHOU Huanhuan, et al. Surfactant promoted solid amine sorbents for CO2 capture[J]. Energy & Environmental Science, 2012, 5(2): 5742-5749. |
33 | WANG Jitong, WANG Mei, ZHAO Beibei, et al. Mesoporous carbon-supported solid amine sorbents for low-temperature carbon dioxide capture[J]. Industrial & Engineering Chemistry Research, 2013, 52(15): 5437-5444. |
34 | WANG Jitong, HUANG Haihong, WANG Mei, et al. Direct capture of low-concentration CO2 on mesoporous carbon-supported solid amine adsorbents at ambient temperature[J]. Industrial & Engineering Chemistry Research, 2015, 54(19): 5319-5327. |
35 | WANG Jitong, WANG Mei, LI Wencheng, et al. Application of polyethylenimine-impregnated solid adsorbents for direct capture of low-concentration CO2 [J]. AIChE Journal, 2015, 61(3): 972-980. |
36 | WANG Mei, YAO Liwen, WANG Jitong, et al. Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture[J]. Applied Energy, 2016, 168: 282-290. |
37 | SAKWA-NOVAK Miles A, TAN Shuai, JONES Christopher W. Role of additives in composite PEI/oxide CO₂ adsorbents: Enhancement in the amine efficiency of supported PEI by PEG in CO₂ capture from simulated ambient air[J]. ACS Applied Materials & Interfaces, 2015, 7(44): 24748-24759. |
38 | WANG Yaozu, MIAO Yihe, GE Bingyao, et al. Additives enhancing supported amines performance in CO2 capture from air[J]. SusMat, 2023, 3: 416-430. |
39 | CHENG Dandan, LIU Yue, WANG Haiqiang, et al. Enhanced CO2 adsorptive performance of PEI/SBA-15 adsorbent using phosphate ester based surfactants as additives[J]. Journal of Environmental Sciences (China), 2015, 38: 1-7. |
40 | Duc Sy DAO, YAMADA Hidetaka, YOGO Katsunori. Large-pore mesostructured silica impregnated with blended amines for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2013, 52(38): 13810-13817. |
41 | ZHAO Yuan, ZHU Yidi, ZHU Tianle, et al. Enhanced CO2 adsorption over silica-supported tetraethylenepentamine sorbents doped with alkanolamines or alcohols[J]. Industrial & Engineering Chemistry Research, 2019, 58(1): 156-164. |
42 | GOEPPERT Alain, METH Sergio, SURYA PRAKASH G K, et al. Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents[J]. Energy & Environmental Science, 2010, 3(12): 1949-1960. |
43 | ZHU Jiangyun, BAKER Sheila N. Lewis base polymers for modifying sorption and regeneration abilities of amine-based carbon dioxide capture materials[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(12): 2666-2674. |
44 | YUE Mingbo, SUN Linbing, CAO Yi, et al. Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group[J]. Microporous and Mesoporous Materials, 2008, 114(1/2/3): 74-81. |
45 | Duc Sy DAO, YAMADA Hidetaka, YOGO Katsunori. Response surface optimization of impregnation of blended amines into mesoporous silica for high-performance CO2 capture[J]. Energy & Fuels, 2015, 29(2): 985-992. |
46 | Duc Sy DAO, YAMADA Hidetaka, YOGO Katsunori. Enhancement of CO2 adsorption/desorption properties of solid sorbents using tetraethylenepentamine/diethanolamine blends[J]. ACS Omega, 2020, 5(37): 23533-23541. |
47 | HE Zhijun, WANG Yaozu, MIAO Yihe, et al. Mixed polyamines promotes CO2 adsorption from air[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107239. |
48 | MIAO Yihe, WANG Yaozu, GE Bingyao, et al. Mixed diethanolamine and polyethyleneimine with enhanced CO2 capture capacity from air[J]. Advanced Science, 2023, 10(16): e2207253. |
49 | WANG Xia, GUO Qingjie, ZHAO Jun, et al. Mixed amine-modified MCM-41 sorbents for CO2 capture[J]. International Journal of Greenhouse Gas Control, 2015, 37: 90-98. |
50 | CHOI Sunho, GRAY McMahan L, JONES Christopher W. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air[J]. ChemSusChem, 2011, 4(5): 628-635. |
51 | FAUTH D J, GRAY M L, PENNLINE H W, et al. Investigation of porous silica supported mixed-amine sorbents for post-combustion CO2 capture[J]. Energy & Fuels, 2012, 26(4): 2483-2496. |
52 | MA Juanjuan, LIU Qiming, CHEN Dandan, et al. Carbon dioxide adsorption using amine-functionalized mesocellular siliceous foams[J]. Journal of Materials Science, 2014, 49(21): 7585-7596. |
53 | WILFONG Walter Christopher, KAIL Brian W, GRAY McMahan L. Rapid screening of immobilized amine CO2 sorbents for steam stability by their direct contact with liquid H2O[J]. ChemSusChem, 2015, 8(12): 2041-2045. |
54 | WILFONG Walter Christopher, KAIL Brian W, JONES Christopher W, et al. Spectroscopic investigation of the mechanisms responsible for the superior stability of hybrid class 1/class 2 CO2 sorbents: A new class 4 category[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12780-12791. |
55 | SANZ Raúl, CALLEJA Guillermo, ARENCIBIA Amaya, et al. Development of high efficiency adsorbents for CO2 capture based on a double-functionalization method of grafting and impregnation[J]. Journal of Materials Chemistry A, 2013, 1(6): 1956-1962. |
56 | WANG Xia, CHEN Linlin, GUO Qingjie. Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture[J]. Chemical Engineering Journal, 2015, 260: 573-581. |
57 | ZHANG Zhonghua, WANG Baodong, SUN Qi, et al. Enhancing sorption performance of solid amine sorbents for CO2 capture by additives[J]. Energy Procedia, 2013, 37: 205-210. |
58 | ZHANG Xiaoyun, ZHENG Xiuxin, ZHANG Sisi, et al. AM-TEPA impregnated disordered mesoporous silica as CO2 capture adsorbent for balanced adsorption-desorption properties[J]. Industrial & Engineering Chemistry Research, 2012, 51(46): 15163-15169. |
59 | Quyen T VU, YAMADA Hidetaka, YOGO Katsunori. Exploring the role of imidazoles in amine-impregnated mesoporous silica for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2018, 57(7): 2638-2644. |
60 | WANG Xiaoxing, SONG Chunshan. New strategy to enhance CO2 capture over a nanoporous polyethylenimine sorbent[J]. Energy & Fuels, 2014, 28(12): 7742-7745. |
61 | WANG Heng, YANG Zuoyan, ZHOU Yuqi, et al. Direct air capture of CO2 with metal nitrate-doped, tetraethylenepentamine-functionalized SBA-15 adsorbents[J]. Industrial & Engineering Chemistry Research, 2023, 62(41): 16579-16588. |
62 | LIU Fujian, HUANG Kuan, JIANG Lilong. Promoted adsorption of CO2 on amine-impregnated adsorbents by functionalized ionic liquids[J]. AIChE Journal, 2018, 64(10): 3671-3680. |
63 | YU Qian, DE LA P DELGADO Jorge, VENEMAN Rens, et al. Stability of a benzyl amine based CO2 capture adsorbent in view of regeneration strategies[J]. Industrial & Engineering Chemistry Research, 2017, 56(12): 3259-3269. |
64 | MIAO Yihe, WANG Yaozu, ZHU Xuancan, et al. Minimizing the effect of oxygen on supported polyamine for direct air capture[J]. Separation and Purification Technology, 2022, 298, 121583. |
65 | BALI Sumit, CHEN Thomas T, CHAIKITTISILP Watcharop, et al. Oxidative stability of amino polymer-alumina hybrid adsorbents for carbon dioxide capture[J]. Energy & Fuels, 2013, 27(3): 1547-1554. |
66 | PANG Simon H, LIVELY Ryan P, JONES Christopher W. Oxidatively-stable linear poly(propylenimine)-containing adsorbents for CO2 capture from ultradilute streams[J]. ChemSusChem, 2018, 11(15): 2628-2637. |
67 | SARAZEN Michele L, SAKWA-NOVAK Miles A, PING Eric W, et al. Effect of different acid initiators on branched poly(propylenimine) synthesis and CO2 sorption performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7338-7345. |
68 | SAYARI Abdelhamid, LIU Qing, MISHRA Prashant. Enhanced adsorption efficiency through materials design for direct air capture over supported polyethylenimine[J]. ChemSusChem, 2016, 9(19): 2796-2803. |
69 | CHOI Woosung, MIN Kyungmin, KIM Chaehoon, et al. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption[J]. Nature Communications, 2016, 7: 12640. |
70 | MIN Kyungmin, CHOI Woosung, KIM Chaehoon, et al. Oxidation-stable amine-containing adsorbents for carbon dioxide capture[J]. Nature Communications, 2018, 9(1): 726. |
71 | PARK Sunghyun, CHOI Keunsu, YU Hyun Jung, et al. Thermal stability enhanced tetraethylenepentamine/silica adsorbents for high performance CO2 capture[J]. Industrial & Engineering Chemistry Research, 2018, 57(13): 4632-4639. |
72 | GOEPPERT Alain, ZHANG Hang, Raktim SEN, et al. Oxidation-resistant, cost-effective epoxide-modified polyamine adsorbents for CO2 capture from various sources including air[J]. ChemSusChem, 2019, 12(8): 1712-1723. |
73 | GUO Mengzhi, LIANG Shengke, LIU Junteng, et al. Epoxide-functionalization of grafted tetraethylenepentamine on the framework of an acrylate copolymer as a CO2 sorbent with long cycle stability[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3853-3864. |
74 | CHOI Woosung, PARK Jongbeom, CHOI Minkee. Cation effects of phosphate additives for enhancing the oxidative stability of amine-containing CO2 adsorbents[J]. Industrial & Engineering Chemistry Research, 2021, 60(17): 6147-6152. |
75 | Quyen T VU, YAMADA Hidetaka, YOGO Katsunori. Inhibitors of oxidative degradation of polyamine-modified silica sorbents for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15598-15605. |
76 | Aliakbar HEYDARI-GORJI, BELMABKHOUT Youssef, SAYARI Abdelhamid. Degradation of amine-supported CO2 adsorbents in the presence of oxygen-containing gases[J]. Microporous and Mesoporous Materials, 2011, 145(1/2/3): 146-149. |
77 | MIAO Yihe, HE Zhijun, ZHU Xuancan, et al. Operating temperatures affect direct air capture of CO2 in polyamine-loaded mesoporous silica[J]. Chemical Engineering Journal, 2021, 426: 131875. |
[1] | GAO Fanxiang, LIU Yang, ZHANG Guiquan, QIN Feng, YAO Jiantao, JIN Hui, SHI Jinwen. Research progress of wet process synergistic desulfurization and decarbonization technology for coal-fired flue gas [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2324-2342. |
[2] | LI Si, TAO Yiyue, XIAO Zhenchong, ZHANG Liang, LI Jun, ZHU Xun, LIAO Qiang. Electrochemical characteristics of the coupled system of thermally regenerative battery stack and electrochemical CO2 reduction cell [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2568-2575. |
[3] | ZHANG Jinpeng, QU Ting, JING Jieying, LI Wenying. Composite catalyst of sorption enhanced water gas shift for hydrogen production: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2629-2644. |
[4] | LI Kai, WEI Helin, ZUO Xiahua, YANG Weimin, YAN Hua, AN Ying. Experimental study on the preparation and stability of water-based carbon black-collagen nanofluids [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1944-1952. |
[5] | QI Yabing, WU Zibo, YANG Qingcui. Research advances of preparation of Pickering emulsions and their stability [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2017-2030. |
[6] | SUN Weiji, LIU Lang, FANG Zhiyu, ZHU Mengbo, XIE Geng, HE Wei, GAO Yuheng. Technique of wet carbonation of modified magnesium slag [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2161-2173. |
[7] | LIU Han, QU Minglu, YE Zhendong, YANG Fan, HUANG Beijia, ZHANG Yaning, LIU Hongzhi. Evaluation of the thermal energy storage performance of calcium-magnesium binary composite salt hydrates [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1764-1773. |
[8] | LU Zhiqiang, SHI Yu, CHEN Pengyu, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of a vertical thermally regenerative ammonia-based battery with a high-concentration ammonia chamber [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1224-1231. |
[9] | XU Zewen, WANG Ming, WANG Qiang, HOU Yingfei. Recent advances in amine-rich membrane for CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1374-1386. |
[10] | LIU Zepeng, ZENG Jijun, TANG Xiaobo, ZHAO Bo, HAN Sheng, LIAO Yuanhao, ZHANG Wei. Thermodynamic properties of four alkyl imidazolium phosphate ionic liquids [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1484-1491. |
[11] | DONG Xiaohan, TIAN Yue, SU Yi. Study on the preparation of composite adsorbent with titanium-containing blast furnace slag and chromium adsorption performance [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1552-1564. |
[12] | SUN Hongjun, LI Teng, LI Jinxia, DING Hongbing. Disturbance wave height prediction model based on Kelvin-Helmholtz instability and interfacial shear [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 609-618. |
[13] | LI Jing, FANG Qing, ZHOU Wenhao, WU Guoliang, WANG Jiahui, ZHANG Hua, NI Hongwei. Effect of baffle configuration on the multiphase flow behaviors of vanadium shale leaching tank [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 619-627. |
[14] | YAN Zihan, WANG Dongdong, YIN Huimin, LIU Wenrui, LU Chunxi. Measuring and analysis methods for the mixing process of jet and gas-solid two-phase flow [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 713-721. |
[15] | CHEN Xiaozhen, LIU Li, YANG Chengmin, ZHENG Bumei, YIN Xiaoying, SUN Jin, YAO Yunhai, DUAN Weiyu. Research progress of alumina-supported hydrodesulfurization catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 948-961. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |