1 |
LEMOAL Morgane, Chantal GASCUEL-ODOUX, Alain MÉNESGUEN, et al. Eutrophication: A new wine in an old bottle?[J]. The Science of the Total Environment, 2019, 651(1): 1-11.
|
2 |
KHIN Than, ANNACHHATRE Ajit P. Novel microbial nitrogen removal processes[J]. Biotechnology Advances, 2004, 22(7): 519-532.
|
3 |
XIE Y D, ZHANG Q H, DZAKPASU M, et al. Towards the formulation of rural sewage discharge standards in China[J]. The Science of the Total Environment, 2021, 759: 143533.
|
4 |
ZHANG Liang, JIANG Ling, ZHANG Jiangtao, et al. Enhancing nitrogen removal through directly integrating Anammox into mainstream wastewater treatment: Advantageous, issues and future study[J]. Bioresource Technology, 2022, 362: 127827.
|
5 |
LOTTI Tommaso, BURZI Ottavia, SCAGLIONE Davide, et al. Two-stage granular sludge partial nitritation/Anammox process for the treatment of digestate from the anaerobic digestion of the organic fraction of municipal solid waste[J]. Waste Management, 2019, 100: 36-44.
|
6 |
KOWALSKI Maciej S, DEVLIN Tanner R, OLESZKIEWICZ Jan A. Start-up and long-term performance of Anammox moving bed biofilm reactor seeded with granular biomass[J]. Chemosphere, 2018, 200: 481-486.
|
7 |
YANG Shuai, YANG Fenglin. Nitrogen removal via short-cut simultaneous nitrification and denitrification in an intermittently aerated moving bed membrane bioreactor[J]. Journal of Hazardous Materials, 2011, 195: 318-323.
|
8 |
CHUNG Jinwook, Wookeun BAE, LEE Yong Woo, et al. Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors[J]. Process Biochemistry, 2007, 42(3): 320-328.
|
9 |
ZHOU Xin, ZHANG Zeqian, ZHANG Xinai, et al. A novel single-stage process integrating simultaneous COD oxidation, partial nitritation-denitritation and Anammox (SCONDA) for treating ammonia-rich organic wastewater[J]. Bioresource Technology, 2018, 254: 50-55.
|
10 |
LI Xu, WANG Gonglei, CHEN Jiabo, et al. Deciphering the concurrence of Comammox, partial denitrification and Anammox in a single low-oxygen mainstream nitrogen removal reactor[J]. Chemosphere, 2022, 305: 135409.
|
11 |
陈加波, 周鑫, 李旭. 以活性污泥为接种污泥厌氧氨氧化工艺的快速启动及脱氮效能[J]. 化工进展, 2022, 41(7): 3900-3907.
|
|
CHEN Jiabo, ZHOU Xin, LI Xu. Rapid start-up and nitrogen removal performance of Anammox process using activated sludge as an inoculation[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3900-3907.
|
12 |
MALOVANYY Andriy, TRELA Jozef, PLAZA Elzbieta. Mainstream wastewater treatment in integrated fixed film activated sludge (IFAS) reactor by partial nitritation/Anammox process[J]. Bioresource Technology, 2015, 198: 478-487.
|
13 |
WANG Chao, LIU Sitong, XU Xiaochen, et al. Achieving mainstream nitrogen removal through simultaneous partial nitrification, Anammox and denitrification process in an integrated fixed film activated sludge reactor[J]. Chemosphere, 2018, 203: 457-466.
|
14 |
MA Bin, QIAN Wenting, YUAN Chuansheng, et al. Achieving mainstream nitrogen removal through coupling Anammox with denitratation[J]. Environmental Science & Technology, 2017, 51(15): 8405-8413.
|
15 |
ZHANG Jianhua, ZHANG Qiong, LI Xiyao, et al. Rapid start-up of partial nitritation and simultaneously phosphorus removal (PNSPR) granular sludge reactor treating low-strength domestic sewage[J]. Bioresource Technology, 2017, 243: 660-666.
|
16 |
REHMAN Zahid Ur, FORTUNATO Luca, CHENG Tuoyuan, et al. Metagenomic analysis of sludge and early-stage biofilm communities of a submerged membrane bioreactor[J]. Science of the Total Environment, 2020, 701: 134682.
|
17 |
ZHAO Yunpeng, LIU Shufeng, JIANG Bo, et al. Genome-centered metagenomics analysis reveals the symbiotic organisms possessing ability to cross-feed with Anammox bacteria in Anammox consortia[J]. Environmental Science & Technology, 2018, 52(19): 11285-11296.
|
18 |
Beatriz FERNÁNDEZ-GÓMEZ, RICHTER Michael, Margarete SCHÜLER, et al. Ecology of marine Bacteroidetes: A comparative genomics approach[J]. The ISME Journal, 2013, 7(5): 1026-1037.
|
19 |
LODHA Tushar, NARVEKAR Simran, KARODI Prachi. Classification of uncultivated Anammox bacteria and Candidatus Uabimicrobium into new classes and provisional nomenclature as Candidatus Brocadiia classis nov. and Candidatus Uabimicrobiia classis nov. of the Phylum Planctomycetes and novel family Candidatus Scalinduaceae fam. nov to accommodate the genus Candidatus Scalindua[J]. Systematic and Applied Microbiology, 2021, 44(6): 126272.
|
20 |
LI Jianwei, PENG Yongzhen, ZHANG Liang, et al. Quantify the contribution of Anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor[J]. Water Research, 2019, 160: 178-187.
|
21 |
SONG Tianwen, LI Shanshan, YIN Zichao, et al. Hydrolyzed polyacrylamide-containing wastewater treatment using ozone reactor-upflow anaerobic sludge blanket reactor-aerobic biofilm reactor multistage treatment system[J]. Environmental Pollution, 2021, 269: 116111.
|
22 |
DAIMS Holger, LEBEDEVA Elena V, PJEVAC Petra, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504-509.
|
23 |
ANNAVAJHALA Medini K, KAPOOR Vikram, Jorge SANTO-DOMINGO, et al. Comammox functionality identified in diverse engineered biological wastewater treatment systems[J]. Environmental Science & Technology Letters, 2018, 5(2): 110-116.
|
24 |
SHAO Yung Hsien, WU Jer Horng. Comammox Nitrospira species dominate in an efficient partial nitrification-Anammox bioreactor for treating ammonium at low loadings[J]. Environmental Science & Technology, 2021, 55(3): 2087-2098.
|
25 |
COTTO Irmarie, DAI Zihan, HUO Linxuan, et al. Long solids retention times and attached growth phase favor prevalence of Comammox bacteria in nitrogen removal systems[J]. Water Research, 2020, 169: 115268.
|
26 |
GOTTSHALL Ekaterina Y, BRYSON Sam J, COGERT Kathryn I, et al. Sustained nitrogen loss in a symbiotic association of Comammox Nitrospira and Anammox bacteria[J]. Water Research, 2021, 202: 117426.
|
27 |
ROOTS Paul, WANG Yubo, ROSENTHAL Alex F, et al. Comammox Nitrospira are the dominant ammonia oxidizers in a mainstream low dissolved oxygen nitrification reactor[J]. Water Research, 2019, 157: 396-405.
|