Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (4): 1720-1730.DOI: 10.16085/j.issn.1000-6613.2023-0504
• Chemical processes and equipment • Previous Articles
LIU Zhaoyang1(), JIA Guotao2, ZHU Zhizhong2, YIN Quanyu1, FU Hongzhe1, ZHAO Xiangyu1, LI Dingjun1, YANG Xinling2(), ZHANG Mingyue1()
Received:
2023-04-03
Revised:
2023-09-18
Online:
2024-05-13
Published:
2024-04-15
Contact:
YANG Xinling, ZHANG Mingyue
刘兆洋1(), 贾国涛2, 朱治忠2, 殷全玉1, 付宏喆1, 赵祥宇1, 栗鼎钧1, 杨欣玲2(), 张明月1()
通讯作者:
杨欣玲,张明月
作者简介:
刘兆洋(1999—),男,硕士研究生,研究方向为烟草废弃资源利用。E-mail:1398498784@qq.com。
基金资助:
CLC Number:
LIU Zhaoyang, JIA Guotao, ZHU Zhizhong, YIN Quanyu, FU Hongzhe, ZHAO Xiangyu, LI Dingjun, YANG Xinling, ZHANG Mingyue. Technological conditions and optimization of near-critical water treatment of waste tobacco leaves[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1720-1730.
刘兆洋, 贾国涛, 朱治忠, 殷全玉, 付宏喆, 赵祥宇, 栗鼎钧, 杨欣玲, 张明月. 近临界水处理废次烟叶工艺条件及优化[J]. 化工进展, 2024, 43(4): 1720-1730.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0504
试验号 | 反应温度/℃ | 固液比 | 保温时间/min |
---|---|---|---|
T1 | 200 | 4∶50 (8g∶100mL) | 15 |
T2 | 220 | 4∶50 (8g∶100mL) | 15 |
T3 | 240 | 4∶50 (8g∶100mL) | 15 |
T4 | 260 | 4∶50 (8g∶100mL) | 15 |
T5 | 280 | 4∶50 (8g∶100mL) | 15 |
试验号 | 反应温度/℃ | 固液比 | 保温时间/min |
---|---|---|---|
T1 | 200 | 4∶50 (8g∶100mL) | 15 |
T2 | 220 | 4∶50 (8g∶100mL) | 15 |
T3 | 240 | 4∶50 (8g∶100mL) | 15 |
T4 | 260 | 4∶50 (8g∶100mL) | 15 |
T5 | 280 | 4∶50 (8g∶100mL) | 15 |
试验号 | 保温时间/min | 固液比 | 反应温度/℃ |
---|---|---|---|
T6 | 1 | 4∶50 (8g∶100mL) | 260 |
T7 | 15 | 4∶50 (8g∶100mL) | 260 |
T8 | 30 | 4∶50 (8g∶100mL) | 260 |
T9 | 45 | 4∶50 (8g∶100mL) | 260 |
T10 | 60 | 4∶50 (8g∶100mL) | 260 |
试验号 | 保温时间/min | 固液比 | 反应温度/℃ |
---|---|---|---|
T6 | 1 | 4∶50 (8g∶100mL) | 260 |
T7 | 15 | 4∶50 (8g∶100mL) | 260 |
T8 | 30 | 4∶50 (8g∶100mL) | 260 |
T9 | 45 | 4∶50 (8g∶100mL) | 260 |
T10 | 60 | 4∶50 (8g∶100mL) | 260 |
试验号 | 固液比 | 反应温度/℃ | 保温时间/min |
---|---|---|---|
T11 | 1∶50 (2g∶100mL) | 260 | 15 |
T12 | 2∶50 (4g∶100mL) | 260 | 15 |
T13 | 3∶50 (6g∶100mL) | 260 | 15 |
T14 | 4∶50 (8g∶100mL) | 260 | 15 |
T15 | 5∶50 (10g∶100mL) | 260 | 15 |
试验号 | 固液比 | 反应温度/℃ | 保温时间/min |
---|---|---|---|
T11 | 1∶50 (2g∶100mL) | 260 | 15 |
T12 | 2∶50 (4g∶100mL) | 260 | 15 |
T13 | 3∶50 (6g∶100mL) | 260 | 15 |
T14 | 4∶50 (8g∶100mL) | 260 | 15 |
T15 | 5∶50 (10g∶100mL) | 260 | 15 |
因素水平 | A(反应温度) /℃ | B(固液比) | C(保温时间) /min |
---|---|---|---|
1 | 240 | 3∶50 (6g∶100mL) | 1 |
2 | 260 | 4∶50 (8g∶100mL) | 15 |
3 | 280 | 5∶50 (10g∶100mL) | 30 |
因素水平 | A(反应温度) /℃ | B(固液比) | C(保温时间) /min |
---|---|---|---|
1 | 240 | 3∶50 (6g∶100mL) | 1 |
2 | 260 | 4∶50 (8g∶100mL) | 15 |
3 | 280 | 5∶50 (10g∶100mL) | 30 |
试验编号 | A(反应 温度)/℃ | B(固液比) | C(保温 时间)/min | D(空白) | 生物油 产率/% |
---|---|---|---|---|---|
T1 | 240 (1) | 3∶50 (1) | 1 (1) | 1 | 50. 63 |
T2 | 240 (1) | 4∶50 (2) | 15 (2) | 2 | 53. 61 |
T3 | 240 (1) | 5∶50 (3) | 30 (3) | 3 | 49. 26 |
T4 | 260 (2) | 3∶50 (1) | 15 (2) | 3 | 56. 17 |
T5 | 260 (2) | 4∶50 (2) | 30 (3) | 1 | 55. 26 |
T6 | 260 (2) | 5∶50 (3) | 1 (1) | 2 | 53. 91 |
T7 | 280 (3) | 3∶50 (1) | 30 (3) | 2 | 48. 33 |
T8 | 280 (3) | 4∶50 (2) | 1 (1) | 3 | 48. 45 |
T9 | 280 (3) | 5∶50 (3) | 15 (2) | 1 | 47. 94 |
均值1 | 51. 17 | 51. 71 | 51. 00 | 51. 28 | — |
均值2 | 55. 11 | 52. 44 | 52. 57 | 51. 95 | — |
均值3 | 48. 24 | 50. 37 | 50. 95 | 51. 29 | — |
极差R | 6. 87 | 2. 07 | 1. 62 | 0. 67 | — |
试验编号 | A(反应 温度)/℃ | B(固液比) | C(保温 时间)/min | D(空白) | 生物油 产率/% |
---|---|---|---|---|---|
T1 | 240 (1) | 3∶50 (1) | 1 (1) | 1 | 50. 63 |
T2 | 240 (1) | 4∶50 (2) | 15 (2) | 2 | 53. 61 |
T3 | 240 (1) | 5∶50 (3) | 30 (3) | 3 | 49. 26 |
T4 | 260 (2) | 3∶50 (1) | 15 (2) | 3 | 56. 17 |
T5 | 260 (2) | 4∶50 (2) | 30 (3) | 1 | 55. 26 |
T6 | 260 (2) | 5∶50 (3) | 1 (1) | 2 | 53. 91 |
T7 | 280 (3) | 3∶50 (1) | 30 (3) | 2 | 48. 33 |
T8 | 280 (3) | 4∶50 (2) | 1 (1) | 3 | 48. 45 |
T9 | 280 (3) | 5∶50 (3) | 15 (2) | 1 | 47. 94 |
均值1 | 51. 17 | 51. 71 | 51. 00 | 51. 28 | — |
均值2 | 55. 11 | 52. 44 | 52. 57 | 51. 95 | — |
均值3 | 48. 24 | 50. 37 | 50. 95 | 51. 29 | — |
极差R | 6. 87 | 2. 07 | 1. 62 | 0. 67 | — |
方差来源 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
A | 71. 38 | 2 | 35. 69 | 80. 67 | 0. 01 | 显著 |
B | 6. 61 | 2 | 3. 31 | 7. 47 | 0. 12 | 不显著 |
C | 5. 12 | 2 | 2. 56 | 5. 79 | 0. 15 | 不显著 |
D(误差) | 0. 88 | 2 | 0. 44 | — | — | — |
方差来源 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
A | 71. 38 | 2 | 35. 69 | 80. 67 | 0. 01 | 显著 |
B | 6. 61 | 2 | 3. 31 | 7. 47 | 0. 12 | 不显著 |
C | 5. 12 | 2 | 2. 56 | 5. 79 | 0. 15 | 不显著 |
D(误差) | 0. 88 | 2 | 0. 44 | — | — | — |
化合物分类 | 化合物名称 | 特征描述 | 质量分数/% |
---|---|---|---|
酚类 | 苯酚 | 有特殊臭味,极稀溶液有甜味 | 22.61 |
愈创木酚 | 焦甜的木质芳香,烟熏、辛香、肉香香气 | 13.65 | |
4-乙基-2-甲氧基苯酚 | 甜而暖的香辛料、草药香气 | 10.25 | |
邻甲酚 | 烟熏、草药气味 | 2.88 | |
杂环类 | 2-乙酰呋喃 | 杏仁、坚果、酵香、牛奶和甜的焦糖香气 | 5.50 |
甲氧基吡嗪 | 似果仁和可可豆香气 | 2.81 | |
2-乙酰基-5-甲基呋喃 | 强烈的甜香、坚果、霉香和焦糖样香气 | 2.54 | |
2-乙基-3, 5-二甲基吡嗪 | 威士忌酒和炒花生似香气 | 1.85 | |
2, 5-二甲基吡嗪 | 炒花生香气和巧克力、奶油风味 | 1.72 | |
麦芽酚 | 焦奶油硬糖的特殊香气,稀溶液有草莓样芳香味道 | 1.35 | |
2-乙酰吡啶 | 爆米花、坚果、烟草香气 | 1.16 | |
2-异丙基-5-甲基吡嗪 | 烤的坚果、土质气味 | 1.04 | |
2-乙酰吡咯 | 面包香气 | 0.89 | |
顺式芳樟醇吡喃氧化物 | 樟脑等弱木香型香气 | 0.74 | |
5-乙基-3-羟基-4-甲基-2(5H)-呋喃酮 | 未熟青水果香气和枫糖、司考其奶糖香味 | 0.71 | |
1, 3-苯并二𫫇唑-5-醇 | 芝麻油香气 | 0.70 | |
2-乙氧基-3-甲基吡嗪 | 坚果、茴香、酿香 | 0.69 | |
呋喃酮 | 焦糖香气、浓郁水果香味及果酱味 | 0.68 | |
三甲基吡嗪 | 烤土豆、核桃、坚果、发酵霉香的香气 | 0.59 | |
6-戊基-2H-吡喃-2-酮 | 蘑菇、蓝干酪或乳品香气 | 0.51 | |
2-呋喃丙酸乙酯 | 春黄菊香气似水果香味 | 0.50 | |
1-(3-吡啶基)-乙酮 | 花生和坚果似香气,颇似爆玉米花的香气 | 0.47 | |
2-乙酰基-3-乙基吡嗪 | 果仁、爆米花、面包皮香气、霉香和土豆香 | 0.41 | |
5, 6, 7, 8-四氢喹喔啉 | 仁果类香气 | 0.34 | |
2, 3, 5, 6-四甲基吡嗪 | 牛肉和猪脂加热时的香气和发酵的大豆味 | 0.33 | |
3-甲基-2H-1-苯并吡喃-2-酮 | 香草香味 | 0.16 | |
萜类 | 薄荷醇 | 愉快的薄荷香气,甜的尖刺气 | 0.92 |
熏衣草醇 | 薰衣草花香香气 | 0.72 | |
β-蒎烯 | 树脂和松脂香气 | 0.68 | |
α-石竹烯 | 辛香、木香、柑橘香、樟脑香、丁香香气 | 0.66 | |
乙酸芳樟酯 | 橙叶、除萜香柠檬及生梨的气息、薰衣草花香气息 | 0.56 | |
5-甲基-2-(1-甲基乙基)-环己酮 | 薄荷样香气,木香底蕴 | 0.52 | |
6, 6-二甲基-双环[3.1.1]庚-2-烯-2-甲醇 | 草香、木香和樟脑样香气 | 0.42 | |
龙脑 | 松树香、樟脑气息和薄荷气味 | 0.38 | |
芳樟醇 | 有甜的、典型的花香、木香香气、新鲜的百合香味 | 0.27 | |
香芹酮 | 葛缕子、莳萝油的香气 | 0.22 | |
β-紫罗兰酮 | 柏木、覆盆子等香型香气 | 0.13 | |
樟脑 | 刺激性芳香味 | 0.12 | |
醇类 | 2-苯乙醇 | 玫瑰香气 | 2.25 |
(E)-2-壬烯-1-醇 | 脂肪和紫罗兰香气 | 1.25 | |
壬醇 | 甜而青的玫瑰花蜡和果香的脂蜡香气,甜橙气息 | 0.76 | |
反-2-顺-6-壬二烯醇 | 未成熟绿色蔬菜气味 | 0.39 | |
酮类 | 对甲基苯乙酮 | 山楂似香气及水果和花香,近似苯乙酮香气 | 2.97 |
苯乙酮 | 类似苯甲醛的杏仁气息,稀释后甜水果味 | 0.98 | |
4'-羟基-3'-甲氧基苯乙酮 | 弱香草嗅味 | 0.14 | |
酯类 | 苯甲酸乙酯 | 冬青油和卡南迦油香气,香调和顺且带甜 | 1.12 |
乙酸异胡薄荷酯 | 薄荷香气 | 0.90 | |
乙酸苄酯 | 茉莉花型特殊芳香 | 0.43 | |
异丁酸香茅酯 | 类似玫瑰和柑橘的香气 | 0.37 | |
苯乙酸乙酯 | 浓烈而甜的蜂蜜香气 | 0.36 | |
乙基乙酸酯 | 蘑菇似香气 | 0.34 | |
顺-3-己烯基丁酸酯 | 新鲜水果的香气、奶油似芳香 | 0.20 | |
2-苯氧乙基异丁酸酯 | 水果和玫瑰香甜气、蜂蜜似香味 | 0.19 | |
正戊酸-(Z)-3-己烯酯 | 强烈扩散性甜的、白脱奶油样果香、酒香香气 | 0.08 | |
醛类 | 2, 4, 6-三甲基-3-环己烯-1-甲醛 | 新鲜有力、飘逸带叶青气的柑橘果香,防臭木样香气 | 1.18 |
2, 6-二甲基-5-庚烯醛 | 新鲜甜瓜清香香气 | 0.58 | |
顺-4-庚烯醛 | 青草和油脂香气 | 0.49 | |
苯甲醛 | 苦杏仁、樱桃及坚果香 | 0.40 | |
庚醛 | 新鲜绿色的草本气味、果子香味 | 0.23 | |
3, 4-二甲氧基苯甲醛 | 香荚兰果实的香味 | 0.15 | |
α-亚乙基-苯乙醛 | 霉香、花香、可可和红茶似香气 | 0.12 | |
含硫类 | (甲硫基)-苯 | 稀释后具有烤咖啡的香味 | 1.28 |
二甲基三硫 | 薄荷气味和浓烈辛香香气、洋葱气息 | 0.04 | |
芳烃类 | 4-丙基愈创木酚 | 甜香、辛香、丁香、青香和花香香气 | 1.00 |
1, 2-二甲氧基-4-(1-丙烯基)-苯 | 丁香香气、辛香香气 | 0.17 | |
酸类 | 惕格酸 | 辛辣香 | 0.33 |
10-十一烯酸 | 特殊果香 | 0.18 | |
醚类 | 苄丁醚 | 玫瑰花和老鹳草似的花香气 | 0.38 |
含氮类 | 十二腈 | 木香、圆柚和橙的柑橘香气、微油脂-醛香 | 0.06 |
化合物分类 | 化合物名称 | 特征描述 | 质量分数/% |
---|---|---|---|
酚类 | 苯酚 | 有特殊臭味,极稀溶液有甜味 | 22.61 |
愈创木酚 | 焦甜的木质芳香,烟熏、辛香、肉香香气 | 13.65 | |
4-乙基-2-甲氧基苯酚 | 甜而暖的香辛料、草药香气 | 10.25 | |
邻甲酚 | 烟熏、草药气味 | 2.88 | |
杂环类 | 2-乙酰呋喃 | 杏仁、坚果、酵香、牛奶和甜的焦糖香气 | 5.50 |
甲氧基吡嗪 | 似果仁和可可豆香气 | 2.81 | |
2-乙酰基-5-甲基呋喃 | 强烈的甜香、坚果、霉香和焦糖样香气 | 2.54 | |
2-乙基-3, 5-二甲基吡嗪 | 威士忌酒和炒花生似香气 | 1.85 | |
2, 5-二甲基吡嗪 | 炒花生香气和巧克力、奶油风味 | 1.72 | |
麦芽酚 | 焦奶油硬糖的特殊香气,稀溶液有草莓样芳香味道 | 1.35 | |
2-乙酰吡啶 | 爆米花、坚果、烟草香气 | 1.16 | |
2-异丙基-5-甲基吡嗪 | 烤的坚果、土质气味 | 1.04 | |
2-乙酰吡咯 | 面包香气 | 0.89 | |
顺式芳樟醇吡喃氧化物 | 樟脑等弱木香型香气 | 0.74 | |
5-乙基-3-羟基-4-甲基-2(5H)-呋喃酮 | 未熟青水果香气和枫糖、司考其奶糖香味 | 0.71 | |
1, 3-苯并二𫫇唑-5-醇 | 芝麻油香气 | 0.70 | |
2-乙氧基-3-甲基吡嗪 | 坚果、茴香、酿香 | 0.69 | |
呋喃酮 | 焦糖香气、浓郁水果香味及果酱味 | 0.68 | |
三甲基吡嗪 | 烤土豆、核桃、坚果、发酵霉香的香气 | 0.59 | |
6-戊基-2H-吡喃-2-酮 | 蘑菇、蓝干酪或乳品香气 | 0.51 | |
2-呋喃丙酸乙酯 | 春黄菊香气似水果香味 | 0.50 | |
1-(3-吡啶基)-乙酮 | 花生和坚果似香气,颇似爆玉米花的香气 | 0.47 | |
2-乙酰基-3-乙基吡嗪 | 果仁、爆米花、面包皮香气、霉香和土豆香 | 0.41 | |
5, 6, 7, 8-四氢喹喔啉 | 仁果类香气 | 0.34 | |
2, 3, 5, 6-四甲基吡嗪 | 牛肉和猪脂加热时的香气和发酵的大豆味 | 0.33 | |
3-甲基-2H-1-苯并吡喃-2-酮 | 香草香味 | 0.16 | |
萜类 | 薄荷醇 | 愉快的薄荷香气,甜的尖刺气 | 0.92 |
熏衣草醇 | 薰衣草花香香气 | 0.72 | |
β-蒎烯 | 树脂和松脂香气 | 0.68 | |
α-石竹烯 | 辛香、木香、柑橘香、樟脑香、丁香香气 | 0.66 | |
乙酸芳樟酯 | 橙叶、除萜香柠檬及生梨的气息、薰衣草花香气息 | 0.56 | |
5-甲基-2-(1-甲基乙基)-环己酮 | 薄荷样香气,木香底蕴 | 0.52 | |
6, 6-二甲基-双环[3.1.1]庚-2-烯-2-甲醇 | 草香、木香和樟脑样香气 | 0.42 | |
龙脑 | 松树香、樟脑气息和薄荷气味 | 0.38 | |
芳樟醇 | 有甜的、典型的花香、木香香气、新鲜的百合香味 | 0.27 | |
香芹酮 | 葛缕子、莳萝油的香气 | 0.22 | |
β-紫罗兰酮 | 柏木、覆盆子等香型香气 | 0.13 | |
樟脑 | 刺激性芳香味 | 0.12 | |
醇类 | 2-苯乙醇 | 玫瑰香气 | 2.25 |
(E)-2-壬烯-1-醇 | 脂肪和紫罗兰香气 | 1.25 | |
壬醇 | 甜而青的玫瑰花蜡和果香的脂蜡香气,甜橙气息 | 0.76 | |
反-2-顺-6-壬二烯醇 | 未成熟绿色蔬菜气味 | 0.39 | |
酮类 | 对甲基苯乙酮 | 山楂似香气及水果和花香,近似苯乙酮香气 | 2.97 |
苯乙酮 | 类似苯甲醛的杏仁气息,稀释后甜水果味 | 0.98 | |
4'-羟基-3'-甲氧基苯乙酮 | 弱香草嗅味 | 0.14 | |
酯类 | 苯甲酸乙酯 | 冬青油和卡南迦油香气,香调和顺且带甜 | 1.12 |
乙酸异胡薄荷酯 | 薄荷香气 | 0.90 | |
乙酸苄酯 | 茉莉花型特殊芳香 | 0.43 | |
异丁酸香茅酯 | 类似玫瑰和柑橘的香气 | 0.37 | |
苯乙酸乙酯 | 浓烈而甜的蜂蜜香气 | 0.36 | |
乙基乙酸酯 | 蘑菇似香气 | 0.34 | |
顺-3-己烯基丁酸酯 | 新鲜水果的香气、奶油似芳香 | 0.20 | |
2-苯氧乙基异丁酸酯 | 水果和玫瑰香甜气、蜂蜜似香味 | 0.19 | |
正戊酸-(Z)-3-己烯酯 | 强烈扩散性甜的、白脱奶油样果香、酒香香气 | 0.08 | |
醛类 | 2, 4, 6-三甲基-3-环己烯-1-甲醛 | 新鲜有力、飘逸带叶青气的柑橘果香,防臭木样香气 | 1.18 |
2, 6-二甲基-5-庚烯醛 | 新鲜甜瓜清香香气 | 0.58 | |
顺-4-庚烯醛 | 青草和油脂香气 | 0.49 | |
苯甲醛 | 苦杏仁、樱桃及坚果香 | 0.40 | |
庚醛 | 新鲜绿色的草本气味、果子香味 | 0.23 | |
3, 4-二甲氧基苯甲醛 | 香荚兰果实的香味 | 0.15 | |
α-亚乙基-苯乙醛 | 霉香、花香、可可和红茶似香气 | 0.12 | |
含硫类 | (甲硫基)-苯 | 稀释后具有烤咖啡的香味 | 1.28 |
二甲基三硫 | 薄荷气味和浓烈辛香香气、洋葱气息 | 0.04 | |
芳烃类 | 4-丙基愈创木酚 | 甜香、辛香、丁香、青香和花香香气 | 1.00 |
1, 2-二甲氧基-4-(1-丙烯基)-苯 | 丁香香气、辛香香气 | 0.17 | |
酸类 | 惕格酸 | 辛辣香 | 0.33 |
10-十一烯酸 | 特殊果香 | 0.18 | |
醚类 | 苄丁醚 | 玫瑰花和老鹳草似的花香气 | 0.38 |
含氮类 | 十二腈 | 木香、圆柚和橙的柑橘香气、微油脂-醛香 | 0.06 |
化合物分类 | 化合物名称 | CAS号 | 质量分数/% |
---|---|---|---|
酯类 | α-亚麻酸 | 463-40-1 | 11.90 |
棕榈酸 | 57-10-3 | 10.29 | |
棕榈酸甲酯 | 112-39-0 | 3.47 | |
酮类 | 二丙酮醇 | 123-42-2 | 18.23 |
2-己酮 | 591-78-6 | 1.34 | |
4,16-雄二烯-3-酮 | 4075-07-4 | 0.64 | |
酚类 | 2,2'-亚甲基双-(4-甲基-6-叔丁基苯酚) | 119-47-1 | 10.84 |
2,4-二叔丁基苯酚 | 96-76-4 | 2.82 | |
2,5-二叔丁基对苯二酚 | 88-58-4 | 0.83 | |
4-(2-氨基丙基)苯酚 | 103-86-6 | 0.30 | |
杂环类 | 2,3-二氢-2-甲基苯并呋喃 | 1746-11-8 | 9.43 |
烟碱 | 54-11-5 | 2.41 | |
1-甲基-7-异丙基萘 | 490-65-3 | 1.53 | |
2,3,6-三甲基萘 | 829-26-5 | 1.20 | |
2-异丙基-3-甲氧基吡嗪 | 25773-40-4 | 0.13 | |
胺类 | 己内酰胺 | 105-60-2 | 7.94 |
油酸酰胺 | 301-02-0 | 1.16 | |
N-甲基乙酰胺 | 79-16-3 | 0.80 | |
烃类 | 1-十八烯 | 112-88-9 | 2.43 |
二十烷 | 112-95-8 | 0.95 | |
正十二烷 | 112-40-3 | 0.93 | |
正十三烷 | 629-50-5 | 0.88 | |
1-十九烯 | 18435-45-5 | 0.75 | |
大牛儿烯B | 15423-57-1 | 0.64 | |
Δ-杜松烯 | 483-76-1 | 0.59 | |
正十八烷 | 593-45-3 | 0.47 | |
1-甲基-4-(2-甲基环氧乙烷基)-7-氧杂双环[4.1.0]庚烷 | 96-08-2 | 0.30 | |
正十一烷 | 1120-21-4 | 0.24 | |
二十五烷 | 629-99-2 | 0.14 | |
醛类 | 铃兰醛 | 80-54-6 | 1.85 |
α-己基肉桂醛 | 101-86-0 | 1.60 | |
萜类 | 柏木脑 | 77-53-2 | 0.65 |
蓝桉醇 | 489-41-8 | 0.61 | |
长叶烯 | 475-20-7 | 0.48 | |
二氢-β-紫罗兰酮 | 17283-81-7 | 0.22 | |
(+)-花侧柏烯 | 16982-00-6 | 0.17 | |
酸类 | 4-氨基-5-氯-2-甲氧基苯甲酸 | 7206-70-4 | 0.84 |
化合物分类 | 化合物名称 | CAS号 | 质量分数/% |
---|---|---|---|
酯类 | α-亚麻酸 | 463-40-1 | 11.90 |
棕榈酸 | 57-10-3 | 10.29 | |
棕榈酸甲酯 | 112-39-0 | 3.47 | |
酮类 | 二丙酮醇 | 123-42-2 | 18.23 |
2-己酮 | 591-78-6 | 1.34 | |
4,16-雄二烯-3-酮 | 4075-07-4 | 0.64 | |
酚类 | 2,2'-亚甲基双-(4-甲基-6-叔丁基苯酚) | 119-47-1 | 10.84 |
2,4-二叔丁基苯酚 | 96-76-4 | 2.82 | |
2,5-二叔丁基对苯二酚 | 88-58-4 | 0.83 | |
4-(2-氨基丙基)苯酚 | 103-86-6 | 0.30 | |
杂环类 | 2,3-二氢-2-甲基苯并呋喃 | 1746-11-8 | 9.43 |
烟碱 | 54-11-5 | 2.41 | |
1-甲基-7-异丙基萘 | 490-65-3 | 1.53 | |
2,3,6-三甲基萘 | 829-26-5 | 1.20 | |
2-异丙基-3-甲氧基吡嗪 | 25773-40-4 | 0.13 | |
胺类 | 己内酰胺 | 105-60-2 | 7.94 |
油酸酰胺 | 301-02-0 | 1.16 | |
N-甲基乙酰胺 | 79-16-3 | 0.80 | |
烃类 | 1-十八烯 | 112-88-9 | 2.43 |
二十烷 | 112-95-8 | 0.95 | |
正十二烷 | 112-40-3 | 0.93 | |
正十三烷 | 629-50-5 | 0.88 | |
1-十九烯 | 18435-45-5 | 0.75 | |
大牛儿烯B | 15423-57-1 | 0.64 | |
Δ-杜松烯 | 483-76-1 | 0.59 | |
正十八烷 | 593-45-3 | 0.47 | |
1-甲基-4-(2-甲基环氧乙烷基)-7-氧杂双环[4.1.0]庚烷 | 96-08-2 | 0.30 | |
正十一烷 | 1120-21-4 | 0.24 | |
二十五烷 | 629-99-2 | 0.14 | |
醛类 | 铃兰醛 | 80-54-6 | 1.85 |
α-己基肉桂醛 | 101-86-0 | 1.60 | |
萜类 | 柏木脑 | 77-53-2 | 0.65 |
蓝桉醇 | 489-41-8 | 0.61 | |
长叶烯 | 475-20-7 | 0.48 | |
二氢-β-紫罗兰酮 | 17283-81-7 | 0.22 | |
(+)-花侧柏烯 | 16982-00-6 | 0.17 | |
酸类 | 4-氨基-5-氯-2-甲氧基苯甲酸 | 7206-70-4 | 0.84 |
化合物种类 | 化合物质量分数/% | |
---|---|---|
水溶性油 | 残渣油 | |
酚类 | 49.39 | 14.79 |
杂环类 | 25.69 | 14.70 |
萜类 | 5.60 | 2.13 |
醇类 | 4.65 | — |
酮类 | 4.09 | 20.21 |
酯类 | 3.99 | 25.66 |
醛类 | 3.15 | 3.45 |
含硫类 | 1.32 | — |
芳烃类 | 1.17 | — |
酸类 | 0.51 | 0.84 |
醚类 | 0.38 | — |
含氮类 | 0.06 | — |
胺类 | — | 9.90 |
烃类 | — | 8.32 |
化合物种类 | 化合物质量分数/% | |
---|---|---|
水溶性油 | 残渣油 | |
酚类 | 49.39 | 14.79 |
杂环类 | 25.69 | 14.70 |
萜类 | 5.60 | 2.13 |
醇类 | 4.65 | — |
酮类 | 4.09 | 20.21 |
酯类 | 3.99 | 25.66 |
醛类 | 3.15 | 3.45 |
含硫类 | 1.32 | — |
芳烃类 | 1.17 | — |
酸类 | 0.51 | 0.84 |
醚类 | 0.38 | — |
含氮类 | 0.06 | — |
胺类 | — | 9.90 |
烃类 | — | 8.32 |
1 | 李雪珍, 先思蓉, 周迎春. 废次烟叶中有效成分茄尼醇的提取研究[J]. 辽宁化工, 2019, 48(1): 10-11, 14. |
LI Xuezhen, XIAN Sirong, ZHOU Yingchun. Extraction of solanesol from discarded tobacco leaves[J]. Liaoning Chemical | |
Industry, 2019, 48(1): 10-11, 14. | |
2 | 中华人民共和国国家统计局. 中国统计年鉴2022[EB/OL]. (2022-09-01)[2022-03-01]. . |
National Bureau of Statistics. 2022 China Statistical Yearbook. (2022-09-01)[2022-03-01]. . | |
3 | 张文姬, 陈桢禄, 邹明民, 等. 烟草资源多元化开发利用潜能[J]. 广东农业科学, 2021, 48(12): 100-110. |
ZHANG Wenji, CHEN Zhenlu, ZOU Mingmin, et al. Diversified development and utilization of tobacco resources[J]. Guangdong Agricultural Sciences, 2021, 48(12): 100-110. | |
4 | 胡嘉维, 吴宇航, 樊功博, 等. 再造烟叶提取工艺优化与应用[J]. 广州化工, 2021, 49(3): 50-54. |
HU Jiawei, WU Yuhang, FAN Gongbo, et al. Optimization and application of extraction technology for reconstituted tobacco leaves[J]. Guangzhou Chemical Industry, 2021, 49(3): 50-54. | |
5 | 杨继鑫. 烟草废弃物生物炭质量安全评价及还田效果研究[D]. 北京: 中国农业科学院, 2021. |
YANG Jixin. Quality and safety assessment of tobacco waste biochar and its returning effect[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
6 | 田俊岭, 路征, 麻星艳, 等. 烟草废弃物在肥料中的应用[J]. 农业技术与装备, 2022(12): 69-75. |
TIAN Junling, LU Zheng, MA Xingyan, et al. The application of tobacco waste in fertilizers[J]. Agricultural Technology & Equipment, 2022(12): 69-75. | |
7 | 谷彦岭, 陈治岍, 张长安, 等. 废弃烟草同时提取烟碱及制备浸膏的研究[J]. 农产品加工, 2022(5): 20-23. |
GU Yanling, CHEN Zhiqian, ZHANG Chang’an, et al. Simultaneous extraction of nicotine extract preparation from discarded tobacco[J]. Farm Products Processing, 2022(5): 20-23. | |
8 | 刘振宇. 废弃烟叶中有效成分提取分离与纯化[D]. 大连: 大连理工大学, 2017. |
LIU Zhenyu. Extraction, separation and purification of effective components from waste tobacco leaves[D]. Dalian: Dalian University of Technology, 2017. | |
9 | 陈月星, 黄金辉, 阎佩云, 等. 酶法辅助乙醇提取废次烟叶绿原酸的工艺研究[J]. 湖北农业科学, 2022, 61(18): 180-184. |
CHEN Yuexing, HUANG Jinhui, YAN Peiyun, et al. Study on the extraction process of chlorogenic acid from discarded tobacco leaves by ethanol assisted with enzyme[J]. Hubei Agricultural Sciences, 2022, 61(18): 180-184. | |
10 | 赖炜扬, 林凯, 鹿洪亮, 等. 再造烟叶正交优化提取及其化学成分和致香成分分析[J]. 厦门大学学报(自然科学版), 2016, 55(1): 144-148. |
LAI Weiyang, LI Kai, LU Hongliang, et al. The optimization of extraction method of reconstituted tobacco by orthogonal test and its chemical and aroma components analysis[J]. Journal of Xiamen University (Natural Science), 2016, 55(1): 144-148. | |
11 | 肖和友, 李宏图, 杨勇, 等. 烟草废弃物生物质炭对植烟土壤、烤烟生长及经济效益的影响[J]. 湖南农业科学, 2018(6): 36-39, 43. |
XIAO Heyou, LI Hongtu, YANG Yong, et al. Effects of tobacco waste biochar on the growth and economic benefits of tobacco and tobacco-planting soil[J]. Hunan Agricultural Sciences, 2018(6): 36-39, 43. | |
12 | 周孚美, 单雪华, 李友良, 等. 残次烟叶型生物有机肥在烤烟生产上的应用[J]. 湖南农业科学, 2016(11): 31-33. |
ZHOU Fumei, SHAN Xuehua, LI Youliang, et al. Application effects of bio-organic fertilizer resulted from defective tobacco leaves on flue-cured tobacco production[J]. Hunan Agricultural Sciences, 2016(11): 31-33. | |
13 | 李野. 废弃烟叶中有效成分分离纯化的工艺研究[D]. 大连: 大连理工大学, 2020. |
LI Ye. The separation and purification of effective components in waste tobacco leaves[D]. Dalian: Dalian University of Technology, 2020. | |
14 | 张骞方, 叶鹏盛, 代顺冬, 等. 烟草生产废弃物资源化利用现状及建议[J]. 现代农业科技, 2020(3): 181, 183. |
ZHANG Qianfang, YE Pengsheng, DAI Shundong, et al. Present situation and suggestions on the resource utilization of tobacco production waste[J]. Modern Agricultural Science and Technology, 2020(3): 181, 183. | |
15 | 应丽亚, 苏平. 亚临界水萃取技术在植物精油提取中的应用潜力[J]. 食品与发酵工业, 2011, 37(5): 142-145. |
YING Liya, SU Ping. Analysis of potential application of subcritical water extraction technology in plant essential oil extraction[J]. Food and Fermentation Industries, 2011, 37(5): 142-145. | |
16 | WITHAG Jan A M, SMEETS Jules R, BRAMER Eddy A, et al. System model for gasification of biomass model compounds in supercritical water-A thermodynamic analysis[J]. The Journal of Supercritical Fluids, 2012, 61: 157-166. |
17 | YOSHIDA H, TERASHIMA M, TAKAHASHI Y. Production of organic acids and amino acids from fish meat by sub-critical water hydrolysis[J]. Biotechnology Progress, 1999, 15(6): 1090-1094. |
18 | 朱宪, 樊琪, 朱广用, 等. 大豆渣在近临界水中水解反应工艺[J]. 化学工程, 2011, 39(4): 79-83. |
ZHU Xian, FAN Qi, ZHU Guangyong, et al. Hydrolysis technology of soybean residue in sub-critical water[J]. Chemical Engineering, 2011, 39(4): 79-83. | |
19 | OBEID Reem, LEWIS David M, SMITH Neil, et al. Reaction kinetics and characterisation of species in renewable crude from hydrothermal liquefaction of monomers to represent organic fractions of biomass feedstocks[J]. Chemical Engineering Journal, 2020, 389: 124397. |
20 | ZHU Zhangbing, SI Buchun, LU Jianwen, et al. Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk[J]. Bioresource Technology, 2017, 243: 9-16. |
21 | 潘昌滨, 刘青锋, 安登龙, 等. 利用烟草废弃物制作生物农药的探究[J]. 农业与技术, 2022, 42(17): 15-18. |
PAN Changbin, LIU Qingfeng, AN Denglong, et al. Study on the production of biological pesticides from tobacco waste[J]. Agriculture and Technology, 2022, 42(17): 15-18. | |
22 | 高岩. 近临界水液化生物质及其应用研究[D]. 长春: 吉林大学, 2019. |
GAO Yan. Near critical water liquefaction biomass and its application[D]. Changchun: Jilin University, 2019. | |
23 | 王则祥, 李航, 谢文銮, 等. 木质素基本结构、热解机理及特性研究进展[J]. 新能源进展, 2020, 8(1): 6-14. |
WANG Zexiang, LI Hang, XIE Wenluan, et al. Progress in basic structure, pyrolysis mechanism and characteristics of lignin[J]. Advances in New and Renewable Energy, 2020, 8(1): 6-14. | |
24 | 樊璐璐, 刘玉香, 范晓军, 等. 木质素及其模型化合物生产愈创木酚的研究进展[J]. 现代化工, 2021, 41(1): 49-52. |
FAN Lulu, LIU Yuxiang, FAN Xiaojun, et al. Research advances on production of guaiacol from lignin and its model compounds[J]. Modern Chemical Industry, 2021, 41(1): 49-52. | |
25 | 傅泽武. 愈创木酚及木质素的热解研究[D]. 北京: 北京林业大学, 2020. |
FU Zewu. The pyrolysis of lignin and its model compound guaiacol[D]. Beijing: Beijing Forestry University, 2020. | |
26 | 邹谋勇, 何理琴, 孙启星, 等. 产4-乙基愈创木酚酵母的鉴定及其在酱油中的应用[J]. 食品科学, 2021, 42(12): 138-144. |
ZOU Mouyong, HE Liqin, SUN Qixing, et al. Identification of 4-ethylguaiacol producing yeast and its application in soy sauce brewing[J]. Food Science, 2021, 42(12): 138-144. | |
27 | HASHIMOTO Michio, TANABE Yoko, HOSSAIN Shahdat, et al. Intake of α-linolenic acid-rich Perilla frutescens leaf powder decreases home blood pressure and serum oxidized low-density lipoprotein in Japanese adults[J]. Molecules, 2020, 25(9): 2099-2114. |
28 | 汪婷, 张晓霞, 李一唯, 等. 亚麻籽油对多囊卵巢综合征大鼠胰岛素抵抗和氧化应激的保护作用[J]. 现代食品科技, 2020, 36(7): 17-24. |
WANG Ting, ZHANG Xiaoxia, LI Yiwei, et al. Protective effects of α-linolenic acid riched flaxseed oil on suppressing insulin resistance and oxidative stress in rats with polycystic ovary syndrome[J]. Modern Food Science and Technology, 2020, 36(7): 17-24. | |
29 | LI Jingjing, GU Zhennan, PAN Yong, et al. Dietary supplementation of α-linolenic acid induced conversion of n-3 LCPUFAs and reduced prostate cancer growth in a mouse model[J]. Lipids in Health and Disease, 2017, 16(1): 136. |
[1] | WANG Haoran, YIN Quanyu, FANG Ming, HOU Jianlin, LI Jun, HE Bin, ZHANG Mingyue. Optimization of near critical-water treatment process of tobacco stems [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5019-5027. |
[2] | ZHU Wei, QI Penggang, SU Yinhai, ZHANG Shuping, XIONG Yuanquan. Preparation and properties of bio-oil hierarchical porous carbon electrode materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3077-3086. |
[3] | LI Xiuping, YU Yang, HE Wang, LYU Junhui. High-gravity intensified decarburization process and apparent kinetics of AMP-PZ composite solution [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 22-28. |
[4] | LI Yufeng, WANG Shaoqing, ZHANG Andong, BI Dongmei, LI Zhihe, GAO Liang, WAN Zhen. Preparation of catalytic porous ceramic balls and catalytic pyrolysis of corn stover [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3597-3607. |
[5] | XIONG Zhe, DENG Wei, LIU Jia, WANG Xuepeng, XU Jun, JIANG Long, SU Sheng, WANG Yi, HU Song, XIANG Jun. Research progress in coke formation characteristics of bio-oil during its non-catalytic thermal conversion process [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1802-1813. |
[6] | FANG Shuqi, WANG Yuqian, LI Pan, CHEN Zhiyong, CHEN Wei, BAI Jing, CHANG Chun. Research progress of hydrogen production by catalytic reforming of bio-oil [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1330-1339. |
[7] | ZHANG Andong, LI Zhihe, WANG Lihong, WANG Shaoqing, LIANG Changming, WAN Zhen. Optimization of in-situ gasification & catalytic reforming process for hydrogen production from aqueous bio-oil [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1340-1348. |
[8] | FANG Shuqi, WANG Yuqian, LI Pan, SONG Jiande, BAI Jing, CHANG Chun. Research progress of main catalyst in biomass pyrolysis and utilization [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5195-5203. |
[9] | ZHANG Shumei, WANG Yunpu, XIA Meiling, ZENG Yuan, LIU Yuhuan, JIANG Lin, TIAN Xiaojie, ZENG Zihong, WU Qiuhao, RUAN Roger. Research progress in preparation of fuel chemicals by dual catalytic pyrolysis of biomass [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2496-2508. |
[10] | GENG Fenghua, ZHANG Rui, LIU Haiyan, MENG Xianghai. Progress in the separation of components and extraction of chemicals from bio-oils [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6640-6655. |
[11] | Zhibin WANG, Laizhi SUN, Lei CHEN, Shuangxia YANG, Xinping XIE, Baofeng ZHAO, Hongyu SI, Dongliang HUA. Progress in hydrogen production by steam catalytic reforming of bio-oil [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 151-163. |
[12] | Li ZHANG, Zonglu YAO, Lixin ZHAO, Zhihe LI, Weiming YI, Peng FU, Chao YUAN. Research progress on preparation of high quality bio-oil by pyrolysis of biomass [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 139-150. |
[13] | Weiwei LI, Xiaofeng XIE, Shubo WANG. Performance degradation analysis of solid polymer electrolyte water electrolysis [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 168-174. |
[14] | Meng LI,Xuedong LIU,Shichun ZHU,Lanjian YU,Jing XU. Application of ultrasound in cathode materials of ternary lithium ion batteries [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 635-642. |
[15] | Lingli LI,Shaoping XU,Huaitian YANG,Muhammad Khan MAHMOOD. Catalytic upgrading of biomass pyrolysis volatile over medical stone in a dual loop reaction system [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 174-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |