Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (2): 984-1000.DOI: 10.16085/j.issn.1000-6613.2023-0288
• Materials science and technology • Previous Articles Next Articles
HE Lan1(), GAO Zhuwei2(), QI Xinyu2, LI Chengxin2, WANG Shihao2, LIU Zhongxin3,4
Received:
2023-02-28
Revised:
2023-04-20
Online:
2024-03-07
Published:
2024-02-25
Contact:
GAO Zhuwei
何兰1(), 高助威2(), 亓欣雨2, 李成欣2, 王世豪2, 刘钟馨3,4
通讯作者:
高助威
作者简介:
何兰(1999—),女,硕士研究生,研究方向为油水分离。E-mail:helan857857@163.com。
基金资助:
CLC Number:
HE Lan, GAO Zhuwei, QI Xinyu, LI Chengxin, WANG Shihao, LIU Zhongxin. Research progress in hydrophobic modification of melamine sponge and its application in oil-water separation field[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 984-1000.
何兰, 高助威, 亓欣雨, 李成欣, 王世豪, 刘钟馨. 三聚氰胺海绵疏水改性及在油水分离领域的研究进展[J]. 化工进展, 2024, 43(2): 984-1000.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0288
改性材料 | 改性方法 | 接触角/(°) | 油水混合物的种类 | 吸收容量/g·g-1 | 分离效率/% | 参考文献 |
---|---|---|---|---|---|---|
活性炭/还原氧化石墨烯/聚二甲基硅氧烷 | 浸涂 | 164 | 油类/有机溶剂 | 120 | >99 | [ |
丝素蛋白-氧化石墨烯 | 浸渍 | 130 | 油类 | 76 | 93 | [ |
高岭石/氧化石墨烯 | 涂覆 | 152.3 | 油类/有机溶剂 | — | >95 | [ |
六水合硝酸镁/硝酸铝九水合物/十二烷基硫酸钠 | 原位改性 | 163.2 | 乳状液 | 70.5~137.2 | >95 | [ |
多巴胺/三甲氧基硅烷/NH2(CH2)11COOH | 原位改性 | >150 | 轻油/重油 | 72.7~161.3 | >98.5 | [ |
氮气 | 炭化 | 120~140 | 溶剂/油类 | 90~200 | 99.5 | [ |
氟烷基硅烷/Fe3O4 | 涂覆/浸涂 | >150 | 油类/有机溶剂 | 59~77 | — | [ |
多巴胺/二乙基三胺/正十二烷硫醇 | 化学修饰 | >150 | 油类/有机溶剂 | >70 | 99.52 | [ |
磁性纳米粒子 | 化学气相沉积 | 151~156 | 油类/有机溶剂 | 39.8~78.7 | — | [ |
多巴胺/Fe3O4/Ag纳米粒子 | 化学修饰 | 156.3 | 油类/有机溶剂 | 55.9~99.6 | 97.3 | [ |
Fe3O4/生物苯并𫫇嗪/长链脂族胺 | 浸涂 | 152 | 油类 | 65.8~136.2 | — | [ |
Ag纳米颗粒/多巴胺 | 原位改性 | 155.9 | 油类/有机溶剂 | (32.5±1.1)~(108.1±1.8) | 95.8 | [ |
改性材料 | 改性方法 | 接触角/(°) | 油水混合物的种类 | 吸收容量/g·g-1 | 分离效率/% | 参考文献 |
---|---|---|---|---|---|---|
活性炭/还原氧化石墨烯/聚二甲基硅氧烷 | 浸涂 | 164 | 油类/有机溶剂 | 120 | >99 | [ |
丝素蛋白-氧化石墨烯 | 浸渍 | 130 | 油类 | 76 | 93 | [ |
高岭石/氧化石墨烯 | 涂覆 | 152.3 | 油类/有机溶剂 | — | >95 | [ |
六水合硝酸镁/硝酸铝九水合物/十二烷基硫酸钠 | 原位改性 | 163.2 | 乳状液 | 70.5~137.2 | >95 | [ |
多巴胺/三甲氧基硅烷/NH2(CH2)11COOH | 原位改性 | >150 | 轻油/重油 | 72.7~161.3 | >98.5 | [ |
氮气 | 炭化 | 120~140 | 溶剂/油类 | 90~200 | 99.5 | [ |
氟烷基硅烷/Fe3O4 | 涂覆/浸涂 | >150 | 油类/有机溶剂 | 59~77 | — | [ |
多巴胺/二乙基三胺/正十二烷硫醇 | 化学修饰 | >150 | 油类/有机溶剂 | >70 | 99.52 | [ |
磁性纳米粒子 | 化学气相沉积 | 151~156 | 油类/有机溶剂 | 39.8~78.7 | — | [ |
多巴胺/Fe3O4/Ag纳米粒子 | 化学修饰 | 156.3 | 油类/有机溶剂 | 55.9~99.6 | 97.3 | [ |
Fe3O4/生物苯并𫫇嗪/长链脂族胺 | 浸涂 | 152 | 油类 | 65.8~136.2 | — | [ |
Ag纳米颗粒/多巴胺 | 原位改性 | 155.9 | 油类/有机溶剂 | (32.5±1.1)~(108.1±1.8) | 95.8 | [ |
1 | KIRBY Mark F, LAW Robin J. Accidental spills at sea—Risk, impact, mitigation and the need for co-ordinated post-incident monitoring[J]. Marine Pollution Bulletin, 2010, 60(6): 797-803. |
2 | BENJAMIN Dubansky, ANDREW Whitehead, MILLER Jeffrey T, et al. Multitissue molecular, genomic, and developmental effects of the Deepwater Horizon oil spill on resident Gulf killifish (Fundulus grandis)[J]. Environmental Science & Technology, 2013, 47(10): 5074-5082. |
3 | MA Junjun, XIE Yangchun, YANG Tao, et al. Melamine foam with pH-responsive wettability for fast oil absorption and desorption[J]. Advanced Materials Interfaces, 2022, 9(10): 2102092. |
4 | SHIN Jung Hwal, Jun-Ho HEO, JEON Seunggyu, et al. Bio-inspired hollow PDMS sponge for enhanced oil-water separation[J]. Journal of Hazardous Materials, 2019, 365: 494-501. |
5 | HUETTEL Markus. Oil pollution of beaches[J]. Current Opinion in Chemical Engineering, 2022, 36: 100803. |
6 | WANG Shihao, GAO Zhuwei, QI Xinyu, et al. Eco-friendly superhydrophobic MOF-doped with cellulose acetate foam for efficient oil-water separation[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108521. |
7 | HUANG Xiqin, JIN Kaili, HOU Keru, et al. A weaving method to prepare double-layer Janus fabric for oil-water separation[J]. Fibers and Polymers, 2022, 23(13): 3624-3637. |
8 | 高助威, 刘钟馨, 王世豪, 等. 浅析棉布及无纺布在高效油水分离膜基底中疏水性的研究[C]//2021年海南机械科技学术论坛论文集. 海口, 2021: 91-95. |
GAO Jiwei, LIU Zhongxin, WANG Shihao, et al. A study on the hydrophobicity of cotton and non woven fabrics in high efficiency oil water separation membrane substrates[C]//Proceedings of the 2021 Hainan Machinery Science and Technology Academic Forum. Haikou, 2021: 91-95. | |
9 | BAIG Umair, FAIZAN M, WAHEED Abdul. A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation[J]. Advances in Colloid and Interface Science, 2022, 303: 102635. |
10 | LI Chengxin, GAO Zhuwei, QI Xinyu, et al. Preparation and research of Mn-TiO2/Fe membrane with high efficiency light-oil/water emulsion separation[J]. Surfaces and Interfaces, 2022, 31: 101995. |
11 | MYEONG Seongjae, Chaehun LIM, KIM Seokjin, et al. High-efficiency oil/water separation of hydrophobic stainless steel Mesh filter through carbon and fluorine surface treatment[J]. Korean Journal of Chemical Engineering, 2023, 40(6): 1418-1424. |
12 | Ting LYU, QI Dongming, ZHANG Dong, et al. Fabrication of recyclable multi-responsive magnetic nanoparticles for emulsified oil-water separation[J]. Journal of Cleaner Production, 2020, 255: 120293. |
13 | YI Peng, HU Huawen, SUI Weiwei, et al. Thermoresponsive polyurethane sponges with temperature-controlled superwettability for oil/water separation[J]. ACS Applied Polymer Materials, 2020, 2(5): 1764-1772. |
14 | 高助威, 李成欣, 王世豪, 等. 植物纤维素类固体废物在油水分离中的应用[C]//2021年海南机械科技学术论坛论文集. 海口, 2021: 113-119. |
GAO Zhuwei, LI Chengxin, WANG Shihao, et al. Application of plant cellulose solid waste in oil water separation[C]//Proceedings of the 2021 Hainan Machinery Science and Technology Academic Forum. Haikou, 2021: 113-119. | |
15 | ZHANG Jun, JI Keju, CHEN Jia, et al. A three-dimensional porous metal foam with selective-wettability for oil-water separation[J]. Journal of Materials Science, 2015, 50(16): 5371-5377. |
16 | SU Bin, TIAN Ye, JIANG Lei. Bioinspired interfaces with superwettability: From materials to chemistry[J]. Journal of the American Chemical Society, 2016, 138(6): 1727-1748. |
17 | FEI Yongsheng, TAN Yujin, DENG Yuyi, et al. In situ construction strategy for three-dimensional Janus cellulose aerogel with highly efficient oil-water separation performance: From hydrophobicity to asymmetric wettability[J]. Green Chemistry, 2022, 24(18): 7074-7081. |
18 | WANG Sen, WANG Xiao, SHI Xiaoyu, et al. A three-dimensional polyoxometalate/graphene aerogel as a highly efficient and recyclable absorbent for oil/water separation[J]. New Carbon Materials, 2021, 36(1): 189-197. |
19 | SUN Tiancheng, HAO Sue, FAN Ruiqing, et al. Hydrophobicity-adjustable MOF constructs superhydrophobic MOF-rGO aerogel for efficient oil-water separation[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56435-56444. |
20 | YUE Jie, WEN Guochang, REN Guina, et al. Superhydrophobic self-supporting BiOBr aerogel for wastewater purification[J]. Langmuir, 2021, 37(1): 406-416. |
21 | LIU Shuai, WANG Shanshan, WANG Hui, et al. Gold nanoparticles modified graphene foam with superhydrophobicity and superoleophilicity for oil-water separation[J]. Science of the Total Environment, 2021, 758: 143660. |
22 | GUO Zheng, LONG Biao, GAO Shijie, et al. Carbon nanofiber based superhydrophobic foam composite for high performance oil/water separation[J]. Journal of Hazardous Materials, 2021, 402: 123838. |
23 | BAUZA Marta, TURNES PALOMINO Gemma, PALOMINO CABELLO Carlos. MIL-100(Fe)-derived carbon sponge as high-performance material for oil/water separation[J]. Separation and Purification Technology, 2021, 257: 117951. |
24 | ZHAN Renming, ZHANG Youquan, CHEN Hao, et al. High-rate and long-life sodium-ion batteries based on sponge-like three-dimensional porous Na-rich ferric pyrophosphate cathode material[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5107-5113. |
25 | ZHU Haiguang, YANG Shun, CHEN Dongyun, et al. A robust absorbent material based on light-responsive superhydrophobic melamine sponge for oil recovery[J]. Advanced Materials Interfaces, 2016, 3(5): 1500683. |
26 | ALAVINIA Sedigheh, Ramin GHORBANI-VAGHEI. Synthesis of 3-oxadiazole-substituted imidazo[1, 2-a]pyridines by nickel immobilized on multifunctional amphiphilic porous polysulfonamide-melamine[J]. New Journal of Chemistry, 2020, 44(30): 13062-13073. |
27 | YIN Rongyang, SUN Pengfei, CHENG Lujun, et al. A three-dimensional melamine sponge modified with MnO x mixed graphitic carbon nitride for photothermal catalysis of formaldehyde[J]. Molecules, 2022, 27(16): 5216. |
28 | CHUN Youngsang, KIM Kyung Rae, KIM Hyeong Ryeol, et al. Mechanical improvement of biochar-alginate composite by using melamine sponge as support and application to Cu(Ⅱ) removal[J]. Journal of Polymers and the Environment, 2022, 30(5): 2037-2049. |
29 | LI Zhihao, GUO Zhiguang. Flexible 3D porous superhydrophobic composites for oil-water separation and organic solvent detection[J]. Materials & Design, 2020, 196: 109144. |
30 | SHI Qiandai, WANG Jing jing, CHEN Lu, et al. Fenton reaction-assisted photodynamic inactivation of calcined melamine sponge against Salmonella and its application[J]. Food Research International, 2022, 151: 110847. |
31 | CHANG Chao, LIU Min, LI Lanxin, et al. Salt-rejecting rGO-coated melamine foams for high-efficiency solar desalination[J]. Journal of Materials Research, 2022, 37(1): 294-303. |
32 | ZHANG Huan, LIU Huie, CHEN Shuang, et al. Carboxymethyl cellulose modified reduced graphene oxide coated melamine sponge for efficient seawater evaporation[J]. Journal of Porous Materials, 2022, 29(6): 1807-1816. |
33 | KIM Seokjin, Chaehun LIM, KWAK Cheol Hwan, et al. Hydrophobic melamine sponge prepared by direct fluorination for efficient separation of emulsions[J]. Journal of Industrial and Engineering Chemistry, 2023, 118: 259-267. |
34 | ZHOU Jian, ZHANG Yan, YANG Yongqiang, et al. Silk fibroin-graphene oxide functionalized melamine sponge for efficient oil absorption and oil/water separation[J]. Applied Surface Science, 2019, 497: 143762. |
35 | DEHINGIA Biswajit, KALITA Hemen. Facile, cost-effective and mechanically stable graphene-melamine sponge for efficient oil/water separation with enhanced recyclability[J]. Process Safety and Environmental Protection, 2023, 170: 1010-1022. |
36 | LI Lei, CHEN Rui, WEN Fengyu, et al. Eco‐friendly and facile modified superhydrophobic melamine sponge by molybdenum sulfide for oil/water separation[J]. Journal of Applied Polymer Science, 2023.3: e53875. |
37 | BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. |
38 | BIXLER Gregory D, Bhushan Bharat. Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow[J]. Nanoscale, 2014, 6(1): 76-96. |
39 | KUMAR Manish, BHARDWAJ Rajneesh. Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof[J]. Scientific Reports, 2020, 10: 935. |
40 | GOODWYN Pablo Perez, MAEZONO Yasunori, HOSODA Naoe, et al. Waterproof and translucent wings at the same time: Problems and solutions in butterflies[J]. Naturwissenschaften, 2009, 96(7): 781-787. |
41 | GAO Xuefeng, JIANG Lei. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36. |
42 | LIU Xueli, ZHOU Jie, XUE Zhongxin, et al. Clam’s shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity[J]. Advanced Materials, 2012, 24(25): 3401-3405. |
43 | FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. |
44 | FENG Lin, ZHANG Yanan, XI Jinming, et al. Petal effect: A superhydrophobic state with high adhesive force[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2008, 24(8): 4114-4119. |
45 | YOUNG Thomas. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. |
46 | WENZEL Robert N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
47 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
48 | PHAM Viet Hung, DICKERSON James H. Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14181-14188. |
49 | BAIG Nadeem, ALGHUNAIMI Fahd I, DOSSARY Hind S, et al. Superhydrophobic and superoleophilic carbon nanofiber grafted polyurethane for oil-water separation[J]. Process Safety and Environmental Protection, 2019, 123: 327-334. |
50 | YANG Shaolin, LI Jinze, ZHEN Cheng, et al. Graphene-based melamine sponges with reverse wettability for oil/water separation through absorption and filtration[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107543. |
51 | WANG Shihao, GAO Zhuwei, QI Xinyu, et al. Eco-friendly graphene-doped cellulose acetate superhydrophobic polymer for efficient oil-water separation[J]. Journal of Water Process Engineering, 2022, 49: 103098. |
52 | VENKATESAN Natesan, YUVARAJ Palani, FATHIMA Nishter Nishad. Fabrication of non-fluorinated superhydrophobic and flame retardant porous material for efficient oil/water separation[J]. Materials Chemistry and Physics, 2022, 286: 126190. |
53 | LIAO Chenchen, XIA Yurou, A Yinaer Nu KESHEN, et al. A facile and green construction of biomimetic, fluorine-free and superhydrophobic melamine sponge with magnetic-driven function for efficient oil-water separation and oil absorption[J]. Journal of Bionic Engineering, 2021, 18(5): 1168-1178. |
54 | XIAO Fei, ZHANG Hongxia, WU Tianzhao, et al. Superhydrophobic/superlipophilic interface layer for oil-water separation[J]. Process Safety and Environmental Protection, 2022, 161: 13-21. |
55 | YANG Yu, DENG Yonghong, TONG Zhen, et al. Multifunctional foams derived from poly(melamine formaldehyde) as recyclable oil absorbents[J]. Journal of Materials Chemistry A, 2014, 2(26): 9994-9999. |
56 | CHEN Xuemei, WEIBEL Justin A, GARIMELLA Suresh V. Continuous oil-water separation using polydimethylsiloxane-functionalized melamine sponge[J]. Industrial & Engineering Chemistry Research, 2016, 55(12): 3596-3602. |
57 | WANG Hui, ZHAO Qi, ZHANG Kuikui, et al. Superhydrophobic nanodiamond-functionalized melamine sponge for oil/water separation[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2022, 38(37): 11304-11313. |
58 | NAZHIPKYZY Meruyert, ASSYLKHANOVA Dana, ARAYLIM Nurgain, et al. Effective separation of petroleum oil-water mixtures via flexible and re-usable hydrophobic soot-coated melamine sponge[J]. Journal of Water Process Engineering, 2022, 49: 103032. |
59 | QIANG Fei, HU Lili, GONG Lixiu, et al. Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states[J]. Chemical Engineering Journal, 2018, 334: 2154-2166. |
60 | YE Xinli, CHEN Zhaofeng, AI Sufen, et al. Effect of pyrolysis temperature on compression and thermal properties of melamine-derived carbon foam[J]. Journal of Analytical and Applied Pyrolysis, 2019, 142: 104619. |
61 | DUMAN Osman, DIKER Ceren Özcan, Sibel TUNÇ. Development of highly hydrophobic and superoleophilic fluoro organothiol-coated carbonized melamine sponge/rGO composite absorbent material for the efficient and selective absorption of oily substances from aqueous environments[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105093. |
62 | CHOI Yunho, KIM Yong Tae, YOU Jae Bem, et al. An efficient isolation of foodborne pathogen using surface-modified porous sponge[J]. Food Chemistry, 2019, 270: 445-451. |
63 | Junwei LYU, WANG Bin, MA Qi, et al. Preparation of superhydrophobic melamine sponges decorated with polysiloxane nanotubes by plasma enhanced chemical vapor deposition (PECVD) method for oil/water separation[J]. Materials Research Express, 2018, 5(7): 075025. |
64 | ZANG Yu, SUN Hong, JING Boyu, et al. Efficient superhydrophobic and flame retardant oil/water separation conjugated microporous polymer-coated sponges[J]. Journal of Materials Science, 2023, 58(6): 2935-2949. |
65 | WANG Zhiheng, DAI Yimin, FANG Chengqian, et al. A bio-inspired green method to fabricate pH-responsive sponge with switchable surface wettability for multitasking and effective oil-water separation[J]. Applied Surface Science, 2022, 602: 154192. |
66 | DU Yongxu, LIU Libin, XIANG Yu, et al. Enhanced electrochemical capacitance and oil-absorbability of N-doped graphene aerogel by using amino-functionalized silica as template and doping agent[J]. Journal of Power Sources, 2018, 379: 240-248. |
67 | ZHANG Wenchao, CAMINO Giovanni, YANG Rongjie. Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance[J]. Progress in Polymer Science, 2017, 67: 77-125. |
68 | TAN Jinglin, ZHANG Yuefei. Trisiloxane functionalized melamine sponges for oil water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634: 127972. |
69 | LI Zengtian, HE Fuan, LIN Bo. Preparation of magnetic superhydrophobic melamine sponge for oil-water separation[J]. Powder Technology, 2019, 345: 571-579. |
70 | ZHANG Ruilong, ZHOU Zhiping, GE Wenna, et al. Robust, fluorine-free and superhydrophobic composite melamine sponge modified with dual silanized SiO2 microspheres for oil-water separation[J]. Chinese Journal of Chemical Engineering, 2021, 33: 50-60. |
71 | ZHENG Ke, LI Wenxi, ZHOU Shaoqi, et al. Facile one-step fabrication of superhydrophobic melamine sponges by poly(phenol-amine) modification method for effective oil-water separation[J]. Journal of Hazardous Materials, 2022, 429: 128348. |
72 | CHUNG Chih-Hsiang, LIU Wanchen, HONG Jinlong. Superhydrophobic melamine sponge modified by cross-linked urea network as recyclable oil absorbent materials[J]. Industrial & Engineering Chemistry Research, 2018, 57(25): 8449-8459. |
73 | DASHAIRYA Love, GOPINATH M, SAHA Partha. Synergistic effect of Zr/Cl dual-ions mediated pyrrole polymerization and development of superhydrophobic melamine sponges for oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599: 124877. |
74 | GONG Li, ZHU Hongxia, WU Wenhao, et al. A durable superhydrophobic porous polymer coated sponge for efficient separation of immiscible oil/water mixtures and oil-in-water emulsions[J]. Journal of Hazardous Materials, 2022, 425: 127980. |
75 | YANG Fan, HAO Longbin, ZHU Yanan, et al. Preparation of graphene modified melamine sponge and solar-assisted cleanup of heavy oil spills[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107779. |
76 | LI Zhangdi, LIN Zhipeng, TIAN Qiong, et al. Solar-heating superhydrophobic modified melamine sponge for efficient recovery of viscous crude oil[J]. Journal of Hazardous Materials, 2022, 440: 129799. |
77 | WANG Xiaotong, HAN Zhongqiang, LIU Yuan, et al. Micro-nano surface structure construction and hydrophobic modification to prepare efficient oil-water separation melamine formaldehyde foam[J]. Applied Surface Science, 2020, 505: 144577. |
78 | LIU Yingying, WANG Xin, FENG Shengyu. Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil-water separation[J]. Advanced Functional Materials, 2019, 29(29): 1902488. |
79 | CHEN Teng, ZHOU Shuai, HU Zhenhua, et al. A multifunctional superhydrophobic melamine sponge decorated with Fe3O4/Ag nanocomposites for high efficient oil-water separation and antibacterial application[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626: 127041. |
80 | YANG Mengmeng, CHEN Zhaofeng, YANG Lixia, et al. Superhydrophobic/superoleophilic modified melamine sponge for oil/water separation[J]. Ceramics International, 2023, 49(7): 11544-11551. |
81 | PENG Min, CHEN Guiqiu, ZENG Guangming, et al. Superhydrophobic kaolinite modified graphene oxide-melamine sponge with excellent properties for oil-water separation[J]. Applied Clay Science, 2018, 163: 63-71. |
82 | HE Ruijie, LIU Shuaizhuo, WANG Rui, et al. In situ modification of melamine sponge by MgAl-LDH with super-hydrophobicity and excellent harsh environment tolerance for high flux emulsion separation[J]. Separation and Purification Technology, 2022, 291: 120916. |
83 | STOLZ Aude, LE FLOCH Sylvie, REINERT Laurence, et al. Melamine-derived carbon sponges for oil-water separation[J]. Carbon, 2016, 107: 198-208. |
84 | LI Zengtian, WU Haotong, CHEN Wanyi, et al. Preparation of magnetic superhydrophobic melamine sponges for effective oil-water separation[J]. Separation and Purification Technology, 2019, 212: 40-50. |
85 | ZHU Yongfei, DU Yonggang, SU Junming, et al. Durable superhydrophobic melamine sponge based on polybenzoxazine and Fe3O4 for oil/water separation[J]. Separation and Purification Technology, 2021, 275: 119130. |
86 | CHEN Teng, LIU Zhiyu, ZHANG Kai, et al. Mussel-inspired Ag NPs immobilized on melamine sponge for reduction of 4-nitrophenol, antibacterial applications and its superhydrophobic derivative for oil–water separation[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50539-50551. |
87 | QI Xinyu, GAO Zhuwei, LI Chengxin, et al. Underwater superoleophobic copper mesh coated with block nano protrusion hierarchical structure for efficient oil/water separation[J]. Journal of Industrial and Engineering Chemistry, 2023, 119: 450-460. |
88 | Minh-Thao NGUYEN-DINH, Thanh Son BUI, LEE Byeong-Kyu, et al. Superhydrophobic MS@CuO@SA sponge for oil/water separation with excellent durability and reusability[J]. Chemosphere, 2022, 292: 133328. |
89 | DONG Hongyu, ZHAN Yingqing, SUN Ao, et al. Magnetically responsive and durable super-hydrophobic melamine sponge material[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 662: 130933. |
90 | XIANG Tengfei, CHEN Depeng, Zhong LYU, et al. Robust superhydrophobic coating with superior corrosion resistance[J]. Journal of Alloys and Compounds, 2019, 798: 320-325. |
91 | LIU Xianfeng, LIU Zhong, WANG Xueyan, et al. Superhydrophobic nanofibrous sponge with hierarchically layered structure for efficient harsh environmental oil-water separation[J]. Journal of Hazardous Materials, 2022, 440: 129790. |
92 | TAPIA Jesús I, Elizabeth ALVARADO-GÓMEZ, ENCINAS Armando. Non-expensive hydrophobic and magnetic melamine sponges for the removal of hydrocarbons and oils from water[J]. Separation and Purification Technology, 2019, 222: 221-229. |
93 | YIN Zichao, LI Yuhang, SONG Tianwen, et al. An environmentally benign approach to prepare superhydrophobic magnetic melamine sponge for effective oil/water separation[J]. Separation and Purification Technology, 2020, 236: 116308. |
94 | CHABOT Victor, HIGGINS Drew, YU Aiping, et al. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment[J]. Energy & Environmental Science, 2014, 7(5): 1564-1596. |
95 | WANG Kai, WANG Ding yang, WANG Meng zhu, et al. Functional photothermal sponges for efficient solar steam generation and accelerated cleaning of viscous crude-oil spill[J]. Solar Energy Materials and Solar Cells, 2020, 204: 110203. |
96 | WANG Yi, ZHOU Lihua, LUO Xiaoshan, et al. Solar-heated graphene sponge for high-efficiency clean-up of viscous crude oil spill[J]. Journal of Cleaner Production, 2019, 230: 995-1002. |
97 | YAN Yuanyang, HE Miao, ZHOU Peizhang, et al. Durable superhydrophobic sponge for all-weather cleanup of viscous crude oil by electrothermal and photothermal effects[J]. Separation and Purification Technology, 2023, 304: 122374. |
98 | YU Jiacheng, CAO Changqian, LIU Shuo, et al. Eco-friendly magneto-photothermal sponge for the fast recovery of highly viscous crude oil spill[J]. Separation and Purification Technology, 2022, 298: 121668. |
99 | GUAN Yihao, WANG Zhining, BAO Mutai, et al. Multi-energies assisted and all-weather recovery of crude oil by superhydrophobic melamine sponge[J]. Journal of Hazardous Materials, 2023, 443: 130131. |
[1] | WANG Baixiang, ZHANG Huining, PENG Yaoqing, REN Huimin. Preparation of biomimetic superhydrophobic cotton fabric by gas phase adsorption and its oil-water separation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6490-6497. |
[2] | LI Dongyan, ZHOU Jian, JIANG Qian, MIAO Kai, NI Shiying, ZOU Dong. Progress in preparations and applications of silicon carbide ceramic membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6399-6408. |
[3] | LU Tao, HU Jiayi, XU Cheng, HU Xinlin, GUO Qingyang, LI Meng. Facile synthesis of superhydrophobic sponge for efficient separation of oil/water mixture [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5353-5362. |
[4] | LIU Zhanjian, YANG Jinyue, JING Jing, ZHANG Xiguang, WANG Huaiyuan. Research progress of three-dimensional super-wetting porous materials in oil-water separation [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 310-320. |
[5] | YE Zequan, WU Qingyun, GU Lin. Recent progress in cellulose-based materials for oil-water separation [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3038-3050. |
[6] | ZHENG Jinbao, LI Chen. Research progress in improving hydrophobicity of starch-based packaging materials [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3089-3102. |
[7] | YAN Hongqin, ZHENG Wengrui, ZHANG Guiyu, WANG Yu, WANG Mengran, ZHU Minhui. Preparation of hydrophobic/oleophilic luffa and its application in oil-water separation [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2893-2899. |
[8] | JING Jiaqiang, HUANG Wanni, SONG Xuehua, LUO Jiaqi, SONG Yang, JI Hui, LUO Qiuhan, WANG Sihan. Design and analysis of novel lubricating element in downhole oil-water separation and lubrication based on Fluent [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5929-5938. |
[9] | Lu ZHANG, Jinpeng SUN, Qingyuan YU, Ruyan LI, Yunhao ZHANG, Wenjun WANG. Effect of hydrophobic modification of wood flour on properties of HDPE based wood plastic composites [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3487-3493. |
[10] | Yang MA, Jiaming WANG, Gaohong HE, Xuehua RUAN. Micro-porous membrane technology for oil-water separation: progress in surface properties and microscopic structures [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2145-2155. |
[11] | Xiaozhen LIU, Tai ZHANG, Changfa XIAO. Research progress on wettability of hydrophobic-oleophylic membranes in oil-water separation [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4516-4528. |
[12] | Bin HUANG, Chen WANG, Cheng FU, Siqiang FU, Likai HUANG, Weisen ZHANG. Research progress on treatment technologies of alkali/surfactant/polymer flooding produced water [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4238-4247. |
[13] | Jing GUO,Guanghua ZHANG,Wanbin ZHANG,Junfeng ZHU,Jiang WU,Lun DU. Effect on surface hydrophobic modification and slurribility of lignite coal by alkyl ketone dimer [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4705-4711. |
[14] | CAO Sijing, PAN Zihe, DU Zhiping, CHENG Fangqin. Fabrication of superhydrophilic/underwater superoleophobic mesh for oil-water separation [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3744-3750. |
[15] | KANG Yong. Analysis on the simulation of hydrocyclone separator by CFD [J]. Chemical Industry and Engineering Progree, 2009, 28(3): 374-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |