Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 6514-6523.DOI: 10.16085/j.issn.1000-6613.2023-1824
• Resources and environmental engineering • Previous Articles
TIAN Tong(), HUANG Yaji(), XIAO Yixuan, CHENG Haoqiang, PAN Hu, ZHOU Qi, LI Zenghui
Received:
2023-10-16
Revised:
2024-01-02
Online:
2024-12-07
Published:
2024-11-15
Contact:
HUANG Yaji
田童(), 黄亚继(), 肖怡萱, 程好强, 潘虎, 周琪, 李增辉
通讯作者:
黄亚继
作者简介:
田童(2000—),男,硕士研究生,研究方向为固体废弃物处理。E-mail:1935224782@qq.com。
基金资助:
CLC Number:
TIAN Tong, HUANG Yaji, XIAO Yixuan, CHENG Haoqiang, PAN Hu, ZHOU Qi, LI Zenghui. Characterization of heavy metals migration from leachate-leaching municipal solid waste incineration bottom ash[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6514-6523.
田童, 黄亚继, 肖怡萱, 程好强, 潘虎, 周琪, 李增辉. 渗滤液浸沥下垃圾焚烧炉渣中的重金属行为[J]. 化工进展, 2024, 43(11): 6514-6523.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1824
项目 | 数值 |
---|---|
COD | 38400 |
pH | 7.29 |
Zn | 15.25 |
Ni | 1.75 |
Cu | 1.12 |
Cr | 0.625 |
Ba | 2.75 |
Pb | 0.375 |
项目 | 数值 |
---|---|
COD | 38400 |
pH | 7.29 |
Zn | 15.25 |
Ni | 1.75 |
Cu | 1.12 |
Cr | 0.625 |
Ba | 2.75 |
Pb | 0.375 |
元素 | 总量 |
---|---|
Ca | 9110 |
Fe | 4610 |
K | 1520 |
Na | 1280 |
Mg | 830 |
Zn | 772.5 |
Ni | 130 |
Ba | 965 |
Cu | 520 |
Cr | 195 |
Pb | 125 |
元素 | 总量 |
---|---|
Ca | 9110 |
Fe | 4610 |
K | 1520 |
Na | 1280 |
Mg | 830 |
Zn | 772.5 |
Ni | 130 |
Ba | 965 |
Cu | 520 |
Cr | 195 |
Pb | 125 |
样本 | 重金属浸出浓度 | |||||
---|---|---|---|---|---|---|
Zn | Cu | Ni | Cr | Pb | Ba | |
原生活垃圾焚烧炉渣 | 13.57 | 1 | 1.4 | 0.01 | — | 0.62 |
浸沥温度50℃;浸沥10min | 5.42 | 2.19 | 0.45 | 0.09 | — | 0.57 |
浸沥温度70℃;浸沥5min | 8.72 | 1.47 | 0.34 | 0.03 | — | 0.59 |
浸沥温度70℃;浸沥10min | 3.09 | 1.13 | 0.35 | 0.09 | — | 0.65 |
浸沥温度70℃;浸沥15min | 3.01 | 1.14 | 0.3 | 0.29 | — | 0.66 |
浸沥温度90℃;浸沥10min | 6.2 | 1.15 | 0.35 | 0.21 | — | 0.64 |
国标限值 | 100 | 40 | 0.5 | 1.5 | 0.25 | 25 |
样本 | 重金属浸出浓度 | |||||
---|---|---|---|---|---|---|
Zn | Cu | Ni | Cr | Pb | Ba | |
原生活垃圾焚烧炉渣 | 13.57 | 1 | 1.4 | 0.01 | — | 0.62 |
浸沥温度50℃;浸沥10min | 5.42 | 2.19 | 0.45 | 0.09 | — | 0.57 |
浸沥温度70℃;浸沥5min | 8.72 | 1.47 | 0.34 | 0.03 | — | 0.59 |
浸沥温度70℃;浸沥10min | 3.09 | 1.13 | 0.35 | 0.09 | — | 0.65 |
浸沥温度70℃;浸沥15min | 3.01 | 1.14 | 0.3 | 0.29 | — | 0.66 |
浸沥温度90℃;浸沥10min | 6.2 | 1.15 | 0.35 | 0.21 | — | 0.64 |
国标限值 | 100 | 40 | 0.5 | 1.5 | 0.25 | 25 |
1 | ZARGAR Tasneem Imtiyaz, ALAM Pervez, KHAN Afzal Husain, et al. Characterization of municipal solid waste: Measures towards management strategies using statistical analysis[J]. Journal of Environmental Management, 2023, 342: 118331. |
2 | AL-GHOUTI Mohammad A, KHAN Mariam, NASSER Mustafa S, et al. Recent advances and applications of municipal solid wastes bottom and fly ashes: Insights into sustainable management and conservation of resources[J]. Environmental Technology & Innovation, 2021, 21: 101267. |
3 | ZHOU Hui, MENG Aihong, LONG Yanqiu, et al. An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value[J]. Renewable and Sustainable Energy Reviews, 2014, 36: 107-122. |
4 | ZHAO Xinyue, YANG Jinyan, NING Ning, et al. Chemical stabilization of heavy metals in municipal solid waste incineration fly ash: A review[J]. Environmental Science and Pollution Research International, 2022, 29(27): 40384-40402. |
5 | DOU Xiaomin, REN Fei, NGUYEN Minh Quan, et al. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 24-38. |
6 | WONG Syieluing, Angel Xin Yee MAH, NORDIN Abu Hassan, et al. Emerging trends in municipal solid waste incineration ashes research: A bibliometric analysis from 1994 to 2018[J]. Environmental Science and Pollution Research, 2020, 27(8): 7757-7784. |
7 | WANG Huan, ZHU Fenfen, LIU Xiaoyan, et al. A mini-review of heavy metal recycling technologies for municipal solid waste incineration fly ash[J]. Waste Management & Research, 2021, 39(9): 1135-1148. |
8 | BACK Seungki, SAKANAKURA Hirofumi. Distribution of recoverable metal resources and harmful elements depending on particle size and density in municipal solid waste incineration bottom ash from dry discharge system[J]. Waste Management, 2021, 126: 652-663. |
9 | JOELLE Kleib, GEORGES Aouad, Abriak NOR-EDINE, et al. Production of Portland cement clinker from French municipal solid waste incineration bottom ash[J]. Case Studies in Construction Materials, 2021, 15: e00629. |
10 | YIN Ke, AHAMED Ashiq, LISAK Grzegorz. Environmental perspectives of recycling various combustion ashes in cement production—A review[J]. Waste Management, 2018, 78: 401-416. |
11 | ZHU Yating, ZHAO Yao, ZHAO Chen, et al. Physicochemical characterization and heavy metals leaching potential of municipal solid waste incinerated bottom ash (MSWI-BA) when utilized in road construction[J]. Environmental Science and Pollution Research, 2020, 27(12): 14184-14197. |
12 | CHYAN Jih Ming, LIN Chien Jung, YU Mujin, et al. An innovative reuse of bottom ash from municipal solid waste incinerators as substrates of constructed wetlands[J]. Chemosphere, 2022, 307: 135896. |
13 | WANG Yabo, HUANG Ling, LAU Raymond. Conversion of municipal solid waste incineration bottom ash to sorbent material: Effect of ash particle size[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68: 351-359. |
14 | WANG Yabo, XIE Yi, YIN Shengming, et al. Municipal solid waste incineration bottom ash supported cobalt oxide catalysts for dye degradation using sulfate radical[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68: 246-253. |
15 | CHIANG Yi Wai, GHYSELBRECHT Karel, SANTOS Rafael M, et al. Synthesis of zeolitic-type adsorbent material from municipal solid waste incinerator bottom ash and its application in heavy metal adsorption[J]. Catalysis Today, 2012, 190(1): 23-30. |
16 | LUO Hongwei, HE Dongqin, ZHU Weiping, et al. Humic acid-induced formation of tobermorite upon hydrothermal treatment with municipal solid waste incineration bottom ash and its application for efficient removal of Cu(Ⅱ) ions[J]. Waste Management, 2019, 84: 83-90. |
17 | LUO Hongwei, WU Yichao, ZHAO Aiqin, et al. Hydrothermally synthesized porous materials from municipal solid waste incineration bottom ash and their interfacial interactions with chloroaromatic compounds[J]. Journal of Cleaner Production, 2017, 162: 411-419. |
18 | 王继全, 袁念念, 王楷, 等. 改性焚烧炉渣吸附剂的制备及其吸附磷的性能和机理研究[J]. 武汉理工大学学报, 2019, 41(8): 77-82. |
WANG Jiquan, YUAN Niannian, WANG Kai, et al. Preparation of modified incinerator slag adsorbent and study on its performance and mechanism of phosphorus adsorption[J]. Journal of Wuhan University of Technology, 2019, 41(8): 77-82. | |
19 | WIJEKOON Prabuddhi, KOLIYABANDARA Pabasari Arundathi, COORAY Asitha T, et al. Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges[J]. Journal of Hazardous Materials, 2022, 421: 126627. |
20 | 吴小卉, 岳波, 王琪, 等. 沸石与炉渣组合材料吸附农村生活垃圾渗滤液的效能及机理研究[J]. 环境科学学报, 2018, 38(8): 3159-3168. |
WU Xiaohui, YUE Bo, WANG Qi, et al. Research on adsorption efficiency and mechanism of zeolite and slag for rural solid waste leachate[J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3159-3168. | |
21 | AHMARUZZAMAN M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals[J]. Advances in Colloid and Interface Science, 2011, 166(1/2): 36-59. |
22 | OLSSON Susanna, VAN SCHAIK Joris W J, GUSTAFSSON Jon Petter, et al. Copper(Ⅱ) binding to dissolved organic matter fractions in municipal solid waste incinerator bottom ash leachate[J]. Environmental Science & Technology, 2007, 41(12): 4286-4291. |
23 | YAO Jun, LI Wenbing, XIA Fangfang, et al. Investigation of Cu leaching from municipal solid waste incinerator bottom ash with a comprehensive approach[J]. Frontiers in Energy, 2011, 5(3): 340-348. |
24 | VAN ZOMEREN André, COMANS Rob N J. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash[J]. Environmental Science & Technology, 2004, 38(14): 3927-3932. |
25 | 宋倩楠. 二硫代氨基甲酸盐类螯合剂的合成及飞灰稳定化效果研究[D]. 北京: 北京化工大学, 2021. |
SONG Qiannan. Synthesis of dithiocarbamate chelating agents and study on stabilizing effect of fly ash[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
26 | LIANG Jialiang, HUANG Xinmiao, YAN Jingwen, et al. A review of the formation of Cr(Ⅵ) via Cr(Ⅲ) oxidation in soils and groundwater[J]. Science of the Total Environment, 2021, 774: 145762. |
27 | ZHU Jingyu, WEI Zhou, LUO Zhenyi, et al. Phase changes during various treatment processes for incineration bottom ash from municipal solid wastes: A review in the application-environment nexus[J]. Environmental Pollution, 2021, 287: 117618. |
28 | HU Xiongfei, HUANG Xunrong, ZHAO Hanghang, et al. Possibility of using modified fly ash and organic fertilizers for remediation of heavy-metal-contaminated soils[J]. Journal of Cleaner Production, 2021, 284: 124713. |
29 | NAGIB Seham, INOUE K. Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching[J]. Hydrometallurgy, 2000, 56(3): 269-292. |
30 | WU Jun, ZHANG Hua, HE Pinjing, et al. Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis[J]. Water Research, 2011, 45(4): 1711-1719. |
31 | YUE Xiu, LI Xiaoming, WANG Dongbo, et al. Simultaneous phosphate and CODcr removals for landfill leachate using modified honeycomb cinders as an adsorbent[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 553-558. |
32 | ZHANG Zhikun, WANG Yanli, ZHANG Yuqi, et al. Stabilization of heavy metals in municipal solid waste incineration fly ash via hydrothermal treatment with coal fly ash[J]. Waste Management, 2022, 144: 285-293. |
[1] | LIU Qingchen, WANG Huawei, LIU Rongwen, ZOU Rongxue, ZHAN Meili, WANG Yanan, SUN Yingjie, XIA Zhengqi, SHAN Bin. Efficiency of coagulation-ozone oxidation on the removal of organic micropollutants from biotreated leachate [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 545-554. |
[2] | KONG Xiangrui, DONG Yuecen, ZHANG Mengyu, WANG Biao, YIN Shui′e, CHEN Bing, LU Jiawei, ZHANG Yuan, FENG Lele, WANG Hongtao, XU Haiyun. Treatment technologies of fly ash from municipal solid waste incineration [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4102-4117. |
[3] | GUO Peng, LI Hongwei, LI Guixian, JI Dong, WANG Dongliang, ZHAO Xinhong. Mechanisms and coping strategies on deactivation of anode catalysts for direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3812-3823. |
[4] | ZHANG Haixia, ZHU Zhiping, ZHANG Siyuan. Research and application progress of circulating fluidized bed gasification with high-alkaline coal [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2254-2278. |
[5] | ZHENG Yu, LI Jingjie, ZHANG Yufeng, ZHAO Mengqi, ZHANG Na, ZHOU Ao, YU Wei, TAN Houzhang, WANG Xuebin. Heavy metal leaching toxicity of typical grate furnace/fluidized bed furnace waste incineration fly ash and their chelated products [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1630-1636. |
[6] | GONG Zhiqiang, LIU Lei, WANG Shaohua, HAN Yue, GUO Junshan, SHANG Panfeng, ZHU Lingkai, ZHENG Wei. Migration and transformation characteristics of heavy metals during incineration of oily sludge [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1614-1620. |
[7] | JIANG Lanying, LI Zhen, CHEN Cong. Research and application progress of landfill leachate treatment by forward osmosis [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6443-6457. |
[8] | WANG Weicheng, WU Hao, WANG Xingjun, GUO Qinghua, LIU Haifeng, YU Guangsuo, WANG Fuchen. Characteristics of migration and enrichment of elements during coal water slurry gasification [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5942-5949. |
[9] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[10] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[11] | TAN Jihuai, YU Min, ZHANG Tongtong, HUANG Nengkun, WANG Ziwen, ZHU Xinbao. Manufacturing of tannin polypropoxy ether carboxylates as efficient and improved migration resistance plasticizers for PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4847-4855. |
[12] | OUYANG Sufang, ZHOU Daowei, HUANG Wei, JIA Feng. Research progress on novel anti-migration rubber antioxidants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3708-3719. |
[13] | ZHENG Xin, JIA Li, WANG Yanlin, ZHANG Jingchao, CHEN Shihu, QIAO Xiaolei, FAN Baoguo. Effect of sewage sludge mixed with coal slime on heavy metal retention characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3233-3241. |
[14] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[15] | WANG Yu, YU Guangwei, LIN Jiajia, LI Changjiang, JIANG Ruqing, XING Zhenjiao, YU Cheng. Preparation of building ceramsite from food waste digestate residues, incineration fly ash and sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1039-1050. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |