Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5555-5568.DOI: 10.16085/j.issn.1000-6613.2023-1504
• Materials science and technology • Previous Articles
WANG Jinran1,2(), WU Junwen3, YIN Junrong1,2, XIAN Chenggang1,2, JIA Wenfeng1,2()
Received:
2023-08-29
Revised:
2023-12-05
Online:
2024-10-29
Published:
2024-10-15
Contact:
JIA Wenfeng
王金冉1,2(), 武俊文3, 殷俊荣1,2, 鲜成钢1,2, 贾文峰1,2()
通讯作者:
贾文峰
作者简介:
王金冉(1999—),女,硕士研究生,研究方向为化学工程与技术。E-mail: 3540191861@qq.com。
基金资助:
CLC Number:
WANG Jinran, WU Junwen, YIN Junrong, XIAN Chenggang, JIA Wenfeng. Supramolecular fracturing fluids: Mechanism of action and research progress[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5555-5568.
王金冉, 武俊文, 殷俊荣, 鲜成钢, 贾文峰. 超分子压裂液: 作用机理及研究进展[J]. 化工进展, 2024, 43(10): 5555-5568.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1504
类型 | 性能及应用 | 参考文献 |
---|---|---|
疏水缔合聚合物(HMP)与阳离子表面活性剂 (VES)协同 | 黏弹性和悬浮能力高,返排率高,破胶后残渣含量少,对储层伤害性 降低至50%,导电性92%,可适用于苏里格盆地 | [ |
疏水缔合聚合物与阴离子表面活性剂十二烷 基苯磺酸钠(SDBS)协同 | 黏弹性、耐温耐盐性好,剪切可逆,破胶后几乎无残渣,可适用于油藏 | [ |
疏水缔合聚合物(HMP)与两性表面活性剂 (OA16)协同 | 具有物理交联型和化学交联型压裂液的清洁性、黏弹性和耐温耐剪切性 优势,在90℃下能保持较高的黏弹性,适应性强 | [ |
疏水改性聚丙烯酰胺与双子表面活性剂 1, 2-N,N-双(二甲基十八烷基)乙烯溴化铵协同 | 耐剪切性好,对储层伤害性低,适应温度比单体的双子表面活性剂高30℃,有希望适用于耐高温清洁压裂液 | [ |
类型 | 性能及应用 | 参考文献 |
---|---|---|
疏水缔合聚合物(HMP)与阳离子表面活性剂 (VES)协同 | 黏弹性和悬浮能力高,返排率高,破胶后残渣含量少,对储层伤害性 降低至50%,导电性92%,可适用于苏里格盆地 | [ |
疏水缔合聚合物与阴离子表面活性剂十二烷 基苯磺酸钠(SDBS)协同 | 黏弹性、耐温耐盐性好,剪切可逆,破胶后几乎无残渣,可适用于油藏 | [ |
疏水缔合聚合物(HMP)与两性表面活性剂 (OA16)协同 | 具有物理交联型和化学交联型压裂液的清洁性、黏弹性和耐温耐剪切性 优势,在90℃下能保持较高的黏弹性,适应性强 | [ |
疏水改性聚丙烯酰胺与双子表面活性剂 1, 2-N,N-双(二甲基十八烷基)乙烯溴化铵协同 | 耐剪切性好,对储层伤害性低,适应温度比单体的双子表面活性剂高30℃,有希望适用于耐高温清洁压裂液 | [ |
途径 | 原料 | 性能 | 参考文献 |
---|---|---|---|
带有相反电荷的聚阴离子和聚阳离子通过库仑力形成具有动态网络的新型压裂液 | 阳离子聚合物CP与阴离子聚合物AP | 具有良好的黏弹性、耐高温性、抗剪切性,在130℃、170s-1下,溶液的黏度保持在40mPa·s以上,破胶后几乎无残渣,对储层损伤小 | [ |
合成的两性离子聚合物 | 阴离子单体4-苯乙烯磺酸钠(SSS)、阳离子单体N,N-二甲基十八烷基烯丙基氯化铵(DOAC)、丙烯酰胺(AM)等 | 具有优异的耐盐、耐高温、耐剪切性,在140℃、170s-1条件下,0.5%(质量分数,下同)的聚合物溶液黏度保持在92mPa·s以上;当盐质量分数为10.0%时,0.3%的聚合物表观黏度保持在948mPa·s左右 | [ |
利用带相反电荷的表面活性剂通过静电相互作用构建的超分子聚集体 | 阴离子/阳离子-非离子表面活性剂(GAES-9)与十六烷基三甲基溴化铵(CTAB) | 总浓度为200mg·L-1复合体系在105mg·L-1盐溶液浓度下仍具有良好的耐盐性,可适用于低渗透油藏 | [ |
利用带相反电荷的表面活性剂通过静电相互作用构建的超分子聚集体 | 阳离子表面活性剂CAS与阴离子聚丙烯酰胺SPAM | 具有良好的黏弹性、耐高温性,在90℃下,二者的混合物SP的表观黏度随表面活性剂浓度的增加而增加或保持不变 | [ |
途径 | 原料 | 性能 | 参考文献 |
---|---|---|---|
带有相反电荷的聚阴离子和聚阳离子通过库仑力形成具有动态网络的新型压裂液 | 阳离子聚合物CP与阴离子聚合物AP | 具有良好的黏弹性、耐高温性、抗剪切性,在130℃、170s-1下,溶液的黏度保持在40mPa·s以上,破胶后几乎无残渣,对储层损伤小 | [ |
合成的两性离子聚合物 | 阴离子单体4-苯乙烯磺酸钠(SSS)、阳离子单体N,N-二甲基十八烷基烯丙基氯化铵(DOAC)、丙烯酰胺(AM)等 | 具有优异的耐盐、耐高温、耐剪切性,在140℃、170s-1条件下,0.5%(质量分数,下同)的聚合物溶液黏度保持在92mPa·s以上;当盐质量分数为10.0%时,0.3%的聚合物表观黏度保持在948mPa·s左右 | [ |
利用带相反电荷的表面活性剂通过静电相互作用构建的超分子聚集体 | 阴离子/阳离子-非离子表面活性剂(GAES-9)与十六烷基三甲基溴化铵(CTAB) | 总浓度为200mg·L-1复合体系在105mg·L-1盐溶液浓度下仍具有良好的耐盐性,可适用于低渗透油藏 | [ |
利用带相反电荷的表面活性剂通过静电相互作用构建的超分子聚集体 | 阳离子表面活性剂CAS与阴离子聚丙烯酰胺SPAM | 具有良好的黏弹性、耐高温性,在90℃下,二者的混合物SP的表观黏度随表面活性剂浓度的增加而增加或保持不变 | [ |
压裂液名称 | 非共价键作用 | 参考文献 |
---|---|---|
超分子自组装 | 主客体包合作用、氢键、疏水 缔合作用 | [ |
超分子VES清洁压裂液 | 氢键、疏水缔合作用 | [ |
表面活性剂类聚合物 | 氢键、静电相互作用 | [ |
超分子压裂液NAF | 主客体包合作用、疏水缔合作用 | [ |
超分子聚合物清洁CO2压裂液 | 氢键、疏水缔合作用 | [ |
超分子表面活性剂压裂液 | 疏水缔合作用 | [ |
超分子聚合物压裂液 | 氢键、疏水缔合作用、静电相互作用 | [ |
超分子黏弹性聚合物基压裂液 | 疏水缔合作用、主客体包合作用 | [ |
压裂液名称 | 非共价键作用 | 参考文献 |
---|---|---|
超分子自组装 | 主客体包合作用、氢键、疏水 缔合作用 | [ |
超分子VES清洁压裂液 | 氢键、疏水缔合作用 | [ |
表面活性剂类聚合物 | 氢键、静电相互作用 | [ |
超分子压裂液NAF | 主客体包合作用、疏水缔合作用 | [ |
超分子聚合物清洁CO2压裂液 | 氢键、疏水缔合作用 | [ |
超分子表面活性剂压裂液 | 疏水缔合作用 | [ |
超分子聚合物压裂液 | 氢键、疏水缔合作用、静电相互作用 | [ |
超分子黏弹性聚合物基压裂液 | 疏水缔合作用、主客体包合作用 | [ |
6 | REN Xiaoke. Study on mechanism and application of self-associated fracturing fluid[D].Chengdu: Southwest Petroleum University, 2018. |
7 | 鲍晋. 页岩气藏体积改造疏水缔合聚合物压裂液基础研究[D]. 成都: 西南石油大学, 2015. |
BAO Jin. Fundamental research of hydrophobically associating water- soluble polymer fracturing liquid used in shale gas reservoir stimulated reservoir volume fracturing[D].Chengdu: Southwest Petroleum University, 2015. | |
8 | 姬思雪. 超分子VES清洁压裂液性能评价及苏里格现场应用[D]. 西安: 西安石油大学, 2016. |
JI Sixue. The performance evaluation of the supramolecular VES clean fracturing fluid and field application[D].Xi’an: Xi’an Shiyou University, 2016. | |
9 | 范美玲. 强化渗吸聚合物型压裂液稠化剂的合成及性能研究[D]. 西安: 陕西科技大学, 2023. |
FAN Meiling. Synthesis and performance of thickening agent for enhanced imbibition of polymer fracturing fluids[D].Xi’an: Shaanxi University of Science & Technology, 2023. | |
10 | 黄世财, 刘通义, 董樱花, 等. 低伤害压裂液在塔里木油田的应用与研究[J]. 钻采工艺, 2014, 37(3): 92-94, 11. |
HUANG Shicai, LIU Tongyi, DONG Yinghua, et al. Lab study on a kind of low damage fracturing fluid used in Tarim oilfield[J]. Drilling & Production Technology, 2014, 37(3): 92-94, 11. | |
11 | MA Xiping, HUANG Qinghong, ZHOU Zhaobo, et al. Synthesis and evaluation of water-soluble fracturing fluid thickener based on hydrophobic association[J]. Materials Letters, 2022, 325: 132857. |
12 | LI Zhe, KANG Wanli, YANG Hongbin, et al. Advances of supramolecular interaction systems for improved oil recovery (IOR)[J]. Advances in Colloid and Interface Science, 2022, 301: 102617. |
13 | MA Yingxian, XIONG Yujia, LAI Jie, et al. A self-healing PAM/CMHPG system for unconventional reservoir stimulation[J]. Macromolecular Materials and Engineering, 2019, 304(3): 1800590. |
14 | 费志雄, 翁琳, 廖芬, 等. 氢键作用构建含硅嵌段共聚物超分子复合物及其自组装行为研究[J]. 高分子学报, 2023, 54(10): 1547-1554. |
FEI Zhixiong, WENG Lin, LIAO Fen, et al. Self-assembly of supramolecular silicon-containing block copolymers based on hydrogen bonding interaction[J]. Acta Polymerica Sinica, 2023, 54(10): 1547-1554. | |
15 | ZHANG Xiangfeng, YANG Hongbin, WANG Pengxiang, et al. Construction and thickening mechanism of amphiphilic polymer supramolecular system based on polyacid[J]. Journal of Molecular Liquids, 2019, 286: 110921. |
16 | ZHANG Min, KANG Wanli, YANG Hongbin, et al. Rheology and microstructure of zwitterionic-anionic surfactant for enhanced oil recovery[J]. Journal of Molecular Liquids, 2021, 341: 116910. |
17 | YOU Qing, ZHANG Peng, BAI Shixun, et al. Supramolecular linear polymer formed by host-guest interactions of β-cyclodextrin dimers and polyacrylamide end-capped with adamantane[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484: 130-135. |
18 | 张照阳, 陈越美, 鲍晋, 等. 页岩气藏压裂暂堵超分子凝胶体系研究[J]. 钻井液与完井液, 2022, 39(6): 767-775. |
ZHANG Zhaoyang, CHEN Yuemei, BAO Jin, et al. Study on supramolecular gel temporary plugging agent for shale gas reservoir fracturing[J]. Drilling Fluid & Completion Fluid, 2022, 39(6): 767-775. | |
19 | 张领宇, 蒋官澄, 安玉秀. 钻井液用超分子增黏提切剂-ZJA的研发与评价[J]. 现代化工, 2016, 36(1): 131-135. |
ZHANG Lingyu, JIANG Guancheng, AN Yuxiu. Research and evaluation of supramolecular tackifier and shear-strength improving agent ZJA for drilling fluids[J]. Modern Chemical Industry, 2016, 36(1): 131-135. | |
20 | LI Xinxin, SARSENBEKULY Bauyrzhan, YANG Hongbin, et al. Rheological behavior of a wormlike micelle and an amphiphilic polymer combination for enhanced oil recovery[J]. Physics of Fluids, 2020, 32(7): 073105. |
21 | YANG Jingbin, SUN Jinsheng, BAI Yingrui, et al. Preparation and characterization of supramolecular gel suitable for fractured formations[J]. Petroleum Science, 2023, 20(4): 2324-2342. |
22 | 张晓虎, 于世虎, 周仲建, 等. 页岩气井用乳液型超分子压裂液制备与应用[J]. 钻井液与完井液, 2019, 36(1): 120-125. |
ZHANG Xiaohu, YU Shihu, ZHOU Zhongjian, et al. Preparation and application of an emulsion supramolecular fracturing fluid for shale gas development[J]. Drilling Fluid & Completion Fluid, 2019, 36(1): 120-125. | |
23 | 蒋其辉. 超分子凝胶压裂液研制与作用机理研究[D]. 北京: 中国石油大学(北京), 2019. |
JIANG Qihui. Development of supramolecular-gel fracturing fluid and action mechanism research[D].Beijing: China University of Petroleum (Beijing), 2019. | |
24 | 吴伟, 刘平平, 孙昊, 等. AAMS-1疏水缔合聚合物压裂液稠化剂合成与应用[J]. 钻井液与完井液, 2016, 33(5): 114-118. |
WU Wei, LIU Pingping, SUN Hao, et al. Synthesis and application of a hydrophobically associating polymer viscosifier for fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2016, 33(5): 114-118. | |
25 | 钱斌, 张照阳, 尹丛彬, 等. 适用于页岩气井压裂的超分子增黏滑溜水[J]. 天然气工业, 2021, 41(11): 97-103. |
QIAN Bin, ZHANG Zhaoyang, YIN Congbin, et al. Supermolecular slickwater viscosifier suitable for fracturing shale gas wells[J]. Natural Gas Industry, 2021, 41(11): 97-103. | |
26 | ZHAO Qingmei, ZHAO Lin, MA Chao. Synthesis and properties of fluorinated hydrophobic association polyacrylamide as thickener for hydraulic fracturing fluid[J]. Iranian Polymer Journal, 2017, 26(8): 589-595. |
27 | YANG Jiang, CUI Weixiang, GUAN Baoshan, et al. Supramolecular fluid of associative polymer and viscoelastic surfactant for hydraulic fracturing[J]. SPE Production & Operations, 2016, 31(4): 318-324. |
28 | ZHAO Zhongcong, LIU Tongyi, LUO Pingya, et al. Performance and field implementation of a new fracturing fluid consisting of hydrophobically associating polyacrylamide and anionic surfactant[J]. Journal of Polymer Engineering, 2016, 36(1): 13-21. |
29 | CHEN Fu, WU Yue, WANG Meng, et al. Self-assembly networks of wormlike micelles and hydrophobically modified polyacrylamide with high performance in fracturing fluid application[J]. Colloid and Polymer Science, 2015, 293(3): 687-697. |
30 | 周逸凝, 崔伟香, 杨江, 等. 一种新型超分子复合压裂液的性能研究[J]. 油田化学, 2015, 32(2): 180-184. |
ZHOU Yining, CUI Weixiang, YANG Jiang, et al. Performance evaluation of a novel supramolecular fracturing fluid[J]. Oilfield Chemistry, 2015, 32(2): 180-184. | |
31 | PU Wanfen, DU Daijun, LIU Rui. Preparation and evaluation of supramolecular fracturing fluid of hydrophobically associative polymer and viscoelastic surfactant[J]. Journal of Petroleum Science and Engineering, 2018, 167: 568-576. |
32 | 公证. 烃基压裂液的稠化方法研究[D]. 东营: 中国石油大学(华东), 2020. |
GONG Zheng. Research on thickening method of hydrocarbon-based fracturing fluid[D].Dongying: China University of Petroleum (Huadong), 2020. | |
33 | 魏志毅, 张金泽, 公证, 等. 双烷基脲稠化烃基压裂液的制备及其流变特性[J]. 中国石油大学学报(自然科学版), 2022, 46(4): 123-129. |
WEI Zhiyi, ZHANG Jinze, GONG Zheng, et al. Preparation and rheological properties of bis-alkyl urea thickened alkane-based fracturing fluid[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(4): 123-129. | |
34 | ZHAO Tianhong, PENG Jie, ZHANG Yiwen, et al. Synthesis of ultra-high concentration of salt-resistant polyacrylamide[J]. Polymers for Advanced Technologies, 2020, 31(12): 2980-2989. |
35 | GAO Guo qiang, SUN Li mei, WANG Lu shan, et al. Phenolic resin based supramolecular aggregates-novel in-depth profile modifier for oil reservoir[J]. Advanced Materials Research, 2012, 554/555/556: 319-322. |
36 | 黄晶, 杨旭, 刘菲, 等. 水基压裂用聚电解质复合溶液的研究[J]. 钻井液与完井液, 2015, 32(6): 81-84, 109. |
HUANG Jing, YANG Xu, LIU Fei, et al. Study on composite polyelectrolyte solution used in water base fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(6): 81-84, 109. | |
37 | QUAN Hongping, LI Zhuoke, HUANG Zhiyu. Self-assembly properties of a temperature- and salt-tolerant amphoteric hydrophobically associating polyacrylamide[J]. RSC Advances, 2016, 6(54): 49281-49288. |
38 | FENG Haishun, HOU Jirui, MA Tao, et al. The ultra-low interfacial tension behavior of the combined cationic/anionic-nonionic gemini surfactants system for chemical flooding[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554: 74-80. |
39 | XU Limin, HAN Ming, ZHANG Xuan, et al. Study on oppositely charged polymer and surfactant mixture for enhancing oil production[C]//Day2Mon,October14,2019.Octobe r13-16,2019. Mishref, Kuwait. SPE, 2019. |
40 | 蒋官澄, 王凯, 贺垠博, 等. 基于超分子化学的钻井液新技术[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 111-120. |
JIANG Guancheng, WANG Kai, HE Yinbo, et al. A new drilling fluid technology based on supramolecular chemistry[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(4): 111-120. | |
41 | 杨冠科, 杨江, 管保山, 等. 耐高温低伤害VES-HT01压裂液的性能[J]. 油田化学, 2014, 31(1): 29-32. |
YANG Guanke, YANG Jiang, GUAN Baoshan, et al. Properties of high temperature fracturing fluids VES-HT01 with low formation damage[J]. Oilfield Chemistry, 2014, 31(1): 29-32. | |
42 | 李志臻, 杨旭, 夏冰, 等. 一种新型无瓜胶电吸引聚合物压裂液体系[J]. 钻井液与完井液, 2014, 31(5): 85-88, 102. |
LI Zhizhen, YANG Xu, XIA Bing, et al. A new non-guar gum polymer fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(5): 85-88, 102. | |
43 | KANG Wanli, ZHANG Hongwen, LU Yao, et al. Study on the enhanced viscosity mechanism of the cyclodextrin polymer and betaine-type amphiphilic polymer inclusion complex[J]. Journal of Molecular Liquids, 2019, 296: 111792. |
44 | PU Wanfen, YANG Yang, WEI Bing, et al. Potential of a β-cyclodextrin/adamantane modified copolymer in enhancing oil recovery through host-guest interactions[J]. Industrial & Engineering Chemistry Research, 2016, 55(31): 8679-8689. |
45 | WEI Bing, Laura ROMERO-ZERÓN, RODRIGUE Denis. Evaluation of two new self-assembly polymeric systems for enhanced heavy oil recovery[J]. Industrial & Engineering Chemistry Research, 2014, 53(43): 16600-16611. |
46 | WEI Bing, Laura ROMERO-ZERÓN, RODRIGUE Denis. Novel self-assembling polymeric system based on a hydrophobic modified copolymer: Formulation, rheological characterization, and performance in enhanced heavy oil recovery[J]. Polymers for Advanced Technologies, 2014, 25(7): 732-741. |
47 | PU Wanfen, DU Daijun, LIU Rui, et al. Synthesis and evaluation of β-cyclodextrin-functionalized hydrophobically associating polyacrylamide[J]. RSC Advances, 2016, 6(98): 96006-96014. |
48 | ZOU Changjun, TANG Quanwu, TAN Naidi, et al. Cyclodextrin and methacrylic acid octyl phenols poly(ethylene oxide) ester-induced synergistic effect in a novel poly(AM-co-A-β-CD-co-AE) polymer[J]. Starch-Stärke, 2012, 64(4): 281-289. |
49 | WEI Peng, GUO Kaidi, PU Wanfen, et al. Aqueous foam stabilized by an in situ hydrophobic polymer via interaction with alkyl polyglycoside for enhancing oil recovery[J]. Energy & Fuels, 2020, 34(2): 1639-1652. |
50 | PU Wanfen, JIANG Feng, WEI Bing, et al. Influences of structure and multi-intermolecular forces on rheological and oil displacement properties of polymer solutions in the presence of Ca2+/Mg2+ [J]. RSC Advances, 2017, 7(8): 4430-4436. |
51 | KANG Wanli, CAO Changxiao, GUO Shujun, et al. Mechanism of silica nanoparticles’ better-thickening effect on amphiphilic polymers in high salinity condition[J]. Journal of Molecular Liquids, 2019, 277: 254-260. |
52 | DU Juan, XIANG Kun, ZHAO Liqiang, et al. Synthesis and characterization of a novel, pH-responsive, bola-based dynamic crosslinked fracturing fluid[J]. RSC Advances, 2019, 9(59): 34389-34400. |
53 | 蒋其辉, 蒋官澄, 刘冲, 等. 超分子压裂液体系的研制及评价[J]. 钻井液与完井液, 2015, 32(5): 73-77, 106. |
JIANG Qihui, JIANG Guancheng, LIU Chong, et al. Development and evaluation of supramolecular fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(5): 73-77, 106. | |
54 | JIANG Zhuyang, YANG Huan, ZUO Ting, et al. A thermally induced β-cyclodextrin/benzene derivatives gel and the potential application in fracturing temporary plugging[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 673: 131738. |
55 | 戴秀兰, 刘通义, 魏俊, 等. 加重压裂液用聚合物稠化剂合成及性能[J]. 钻井液与完井液, 2019, 36(6): 766-770. |
DAI Xiulan, LIU Tongyi, WEI Jun, et al. Synthesis and performance of a polymeric thickening agent for weighted fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(6): 766-770. | |
56 | 余东合, 陈薇羽, 刘国华, 等. 温度刺激响应型超分子相变压裂液的制备与性能评价[J]. 油田化学, 2021, 38(2): 223-229. |
YU Donghe, CHEN Weiyu, LIU Guohua, et al. Preparation and performance evaluation of supramolecular phase change fracturing fluid with thermal stimuli-response[J]. Oilfield Chemistry, 2021, 38(2): 223-229. | |
1 | 毛峥, 李亭, 刘德华, 等. 水力压裂支撑剂应用现状与研究进展[J]. 应用化工, 2022, 51(2): 525-530, 537. |
MAO Zheng, LI Ting, LIU Dehua, et al. Application and research progress of hydraulic fracturing proppant[J]. Applied Chemical Industry, 2022, 51(2): 525-530, 537. | |
2 | DAVOODI Shadfar, Mohammed AL-SHARGABI, WOOD David A, et al. A comprehensive review of beneficial applications of viscoelastic surfactants in wellbore hydraulic fracturing fluids[J]. Fuel, 2023, 338: 127228. |
3 | 路遥, 康万利, 吴海荣, 等. 丙烯酰胺基聚合物压裂液研究进展[J]. 高分子材料科学与工程, 2018, 34(12): 156-162. |
LU Yao, KANG Wanli, WU Hairong, et al. Comprehensive review of acrylamide-based polymer fracturing fluid[J]. Polymer Materials Science & Engineering, 2018, 34(12): 156-162. | |
4 | 潘一, 王瞳煜, 杨双春, 等. 黏弹性表面活性剂压裂液的研究与应用进展[J]. 化工进展, 2018, 37(4): 1566-1574. |
PAN Yi, WANG Tongyu, YANG Shuangchun, et al. Progress in research and application of viscoelastic surfactant fracturing fluid[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1566-1574. | |
5 | 路遥. 基于超分子作用的新型聚合物压裂液体系构筑及增效机制[D]. 北京: 中国石油大学(北京), 2020. |
LU Yao. The construction and synergistic mechanism of a novel polymer fracturing fluid system based on supramolecular association[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
6 | 任孝柯. 自缔合压裂液的作用机理及应用研究[D]. 成都: 西南石油大学, 2018. |
57 | ZHANG Yang, MAO Jincheng, ZHAO Jinzhou, et al. Preparation of a novel fracturing fluid system with excellent elasticity and low friction[J]. Polymers, 2019, 11(10): 1539. |
58 | 蒋官澄, 王凯, 宣扬, 等. 黄原胶-β环糊精自组装体系在无土相水基钻井液中的应用研究[J]. 石油科学通报, 2016, 1(2): 279-285. |
JIANG Guancheng, WANG Kai, XUAN Yang, et al. Preparation and application of self-assembly system based on xanthan gum and β-cyclodextrin in clay-free water based drilling fluid[J]. Petroleum Science Bulletin, 2016, 1(2): 279-285. | |
59 | 颜菲, 于梦红, 罗成, 等. 特低渗储层压裂用降阻剂CFZ-1的研制及应用[J]. 油田化学, 2019, 36(1): 63-67. |
YAN Fei, YU Menghong, LUO Cheng, et al. Preparation and application of friction reducing agent CFZ-1 for fracturing in ultra-low permeability reservoir[J]. Oilfield Chemistry, 2019, 36(1): 63-67. | |
60 | 郭庆, 刘通义, 林波, 等. 超分子聚合物清洁CO2泡沫压裂液的研究及应用[J]. 石油与天然气化工, 2016, 45(5): 62-66. |
GUO Qing, LIU Tongyi, LIN Bo, et al. Research and application of a clean supramolecular polymeric CO2 foam fracturing fluid[J]. Chemical Engineering of Oil & Gas, 2016, 45(5): 62-66. | |
61 | 石华强, 丁里, 丁雅勤, 等. 超分子表面活性剂压裂液体系研发及在苏里格气田的初步应用[J]. 科学技术与工程, 2013, 13(15): 4352-4355. |
SHI Huaqiang, DING Li, DING Yaqin, et al. The research of the supramolecular surfactant fracturing fluid system and its preliminary application in Sulige gas field[J]. Science Technology and Engineering, 2013, 13(15): 4352-4355. | |
62 | 方梦莉, 高婷, 徐毓珠. 超分子压裂液的研究及现场应用[J]. 江汉石油职工大学学报, 2014, 27(3): 18-20. |
FANG Mengli, GAO Ting, XU Yuzhu. Study and application of supermolecule fracturing fluid[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2014, 27(3): 18-20. | |
63 | FAN Meiling, WANG Lei, LI Jing, et al. Preparation of supramolecular viscoelastic polymers with shear, temperature, and salt resistance/sensitivity by amphiphilic functional monomer modification[J]. Polymer Testing, 2022, 116: 107799. |
[1] | LU Shijian, LIU Miaomiao, LIU Ling, KANG Guojun, MAO Songbai, WANG Feng, ZHANG Juanjuan, GONG Yuping. Progress and future development trend of amine method of CO2 capture technology from flue gas [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 435-444. |
[2] | Yanfang DENG, Anru LIU, Minghui LUO, Jieping FAN. Research progress of molecularly imprinted membrane for separation [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2166-2176. |
[3] | GENG Rui1. 2,LU Shengli2,GAO Jianrong1. Research progress in TiO2 photoanode morphology based on DSSC [J]. Chemical Industry and Engineering Progree, 2014, 33(02): 412-417. |
[4] | WU Jie. Progress of reduction methods of graphene oxide [J]. Chemical Industry and Engineering Progree, 2013, 32(06): 1352-1356. |
[5] | MA Shuangchen,WANG Mengxuan,MENG Yanan,CHEN Weizhong,LU Dongli,HAN Tingting. Research on the absorption of CO2 from flue gas and the desorption of decarbonization solution using ammonia method [J]. Chemical Industry and Engineering Progree, 2012, 31(05): 1143-1148. |
[6] | XIAO Weina1,HUANG Xue2,FENG Guangzhu3,YIN Guoqiang3,CUI Yingde3. Research progress of toughening modification of polylactic acid [J]. Chemical Industry and Engineering Progree, 2011, 30(3): 578-. |
[7] | ZHANG Yuan,TAO Shuming,QIU Xiaoyun,JIN Kemo,HU Shuwen. Research progress in biodegradable plastics and their properties characterization [J]. Chemical Industry and Engineering Progree, 2010, 29(9): 1666-. |
[8] | YAN Kang1,QIAO Xu1,CHEN Qun2. Research progress in methylal synthesis [J]. Chemical Industry and Engineering Progree, 2010, 29(6): 1129-. |
[9] | LI Li,CAO Yafeng,LIANG Lingxun. Research progress of reverse atom transfer radical polymerization [J]. Chemical Industry and Engineering Progree, 2009, 28(2): 283-. |
[10] | LIU Ruijiang,ZHANG Yewang,WEN Chongwei,LU Zheng. Progress of synthesis techology of N-acetylmorpholine [J]. Chemical Industry and Engineering Progree, 2009, 28(10): 1828-. |
[11] | LIU Ruijiang,ZHANG Yewang,YU Xiaofeng. Progress of synthesis techology of N-formylmorpholine [J]. Chemical Industry and Engineering Progree, 2008, 27(5): 708-. |
[12] | YU Yi,ZHENG Ping,JIN Rencun,TANG Chongjian,WANG Caihua. Biotechnology for dyeing and printing wastewater treatment [J]. Chemical Industry and Engineering Progree, 2008, 27(11): 1724-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |