Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 260-268.DOI: 10.16085/j.issn.1000-6613.2023-0516
• Column: Chemical process intensification • Previous Articles
ZHANG Liang(), MA Ji, HE Gaohong, JIANG Xiaobin(), XIAO Wu()
Received:
2023-04-04
Revised:
2023-05-10
Online:
2024-02-05
Published:
2024-01-20
Contact:
JIANG Xiaobin, XIAO Wu
通讯作者:
姜晓滨,肖武
作者简介:
张梁(1998—),男,硕士,研究方向为膜结晶耦合过程。E-mail:zl1225689725@163.com。
基金资助:
CLC Number:
ZHANG Liang, MA Ji, HE Gaohong, JIANG Xiaobin, XIAO Wu. Determination and analysis of combined cooling and antisolvent crystallization metastable zone width of cefuroxime sodium with membrane regulation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 260-268.
张梁, 马骥, 贺高红, 姜晓滨, 肖武. 膜调控的头孢呋辛钠溶析-冷却耦合结晶成核介稳区测定及分析[J]. 化工进展, 2024, 43(1): 260-268.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0516
外径/mm | 内径/mm | 水接触角/(°) | 热导率/W·m-1·K-1 | 孔径/μm | 孔隙率/% |
---|---|---|---|---|---|
1.6~1.8 | 0.8 | 107 | 0.17 | 0.2~0.25 | 39.84 |
外径/mm | 内径/mm | 水接触角/(°) | 热导率/W·m-1·K-1 | 孔径/μm | 孔隙率/% |
---|---|---|---|---|---|
1.6~1.8 | 0.8 | 107 | 0.17 | 0.2~0.25 | 39.84 |
外径/mm | 内径/mm | 长度/mm | 膜丝数量/根 | 装填密度/m2·m-3 | 装填率/% |
---|---|---|---|---|---|
16 | 13 | 105 | 5 | 171 | 12.83 |
外径/mm | 内径/mm | 长度/mm | 膜丝数量/根 | 装填密度/m2·m-3 | 装填率/% |
---|---|---|---|---|---|
16 | 13 | 105 | 5 | 171 | 12.83 |
Δ /g溶质·g总溶剂-1 | ||||||
---|---|---|---|---|---|---|
0.05 | 0.23 | 0.833 | 27.78 | 0.846 | 0.00061 | 44 |
0.05 | 0.23 | 0.857 | 27.50 | 0.868 | 0.00045 | 50 |
0.05 | 0.47 | 0.833 | 28.77 | 0.848 | 0.00067 | 25 |
0.05 | 0.67 | 0.800 | 28.61 | 0.831 | 0.00158 | 28 |
0.05 | 0.67 | 0.857 | 28.87 | 0.871 | 0.00057 | 23 |
0.10 | 0.23 | 0.800 | 23.09 | 0.828 | 0.00143 | 70 |
0.10 | 0.23 | 0.857 | 24.47 | 0.869 | 0.00049 | 55 |
0.10 | 0.47 | 0.857 | 26.93 | 0.870 | 0.00054 | 31 |
0.10 | 0.67 | 0.800 | 27.06 | 0.833 | 0.00166 | 29 |
0.10 | 0.67 | 0.833 | 27.97 | 0.850 | 0.00077 | 20 |
0.20 | 0.23 | 0.800 | 13.81 | 0.832 | 0.00161 | 81 |
0.20 | 0.23 | 0.833 | 18.80 | 0.850 | 0.00075 | 56 |
0.20 | 0.47 | 0.800 | 21.53 | 0.833 | 0.00167 | 42 |
0.20 | 0.47 | 0.857 | 23.20 | 0.872 | 0.00059 | 34 |
0.20 | 0.67 | 0.833 | 25.46 | 0.852 | 0.00085 | 23 |
Δ /g溶质·g总溶剂-1 | ||||||
---|---|---|---|---|---|---|
0.05 | 0.23 | 0.833 | 27.78 | 0.846 | 0.00061 | 44 |
0.05 | 0.23 | 0.857 | 27.50 | 0.868 | 0.00045 | 50 |
0.05 | 0.47 | 0.833 | 28.77 | 0.848 | 0.00067 | 25 |
0.05 | 0.67 | 0.800 | 28.61 | 0.831 | 0.00158 | 28 |
0.05 | 0.67 | 0.857 | 28.87 | 0.871 | 0.00057 | 23 |
0.10 | 0.23 | 0.800 | 23.09 | 0.828 | 0.00143 | 70 |
0.10 | 0.23 | 0.857 | 24.47 | 0.869 | 0.00049 | 55 |
0.10 | 0.47 | 0.857 | 26.93 | 0.870 | 0.00054 | 31 |
0.10 | 0.67 | 0.800 | 27.06 | 0.833 | 0.00166 | 29 |
0.10 | 0.67 | 0.833 | 27.97 | 0.850 | 0.00077 | 20 |
0.20 | 0.23 | 0.800 | 13.81 | 0.832 | 0.00161 | 81 |
0.20 | 0.23 | 0.833 | 18.80 | 0.850 | 0.00075 | 56 |
0.20 | 0.47 | 0.800 | 21.53 | 0.833 | 0.00167 | 42 |
0.20 | 0.47 | 0.857 | 23.20 | 0.872 | 0.00059 | 34 |
0.20 | 0.67 | 0.833 | 25.46 | 0.852 | 0.00085 | 23 |
/g溶质·g总溶剂-1 | ||||||
---|---|---|---|---|---|---|
0.05 | 0.24 | 0.833 | 25.14 | 0.854 | 0.00149 | 97 |
0.05 | 0.27 | 0.800 | 26.40 | 0.833 | 0.00164 | 72 |
0.05 | 0.43 | 0.800 | 27.41 | 0.837 | 0.00182 | 51 |
0.05 | 0.49 | 0.857 | 27.56 | 0.878 | 0.00085 | 48 |
0.05 | 0.67 | 0.833 | 27.83 | 0.861 | 0.00182 | 43 |
0.10 | 0.24 | 0.833 | 20.69 | 0.859 | 0.00144 | 93 |
0.10 | 0.26 | 0.800 | 21.31 | 0.836 | 0.00184 | 86 |
0.10 | 0.44 | 0.833 | 24.32 | 0.862 | 0.00156 | 56 |
0.10 | 0.66 | 0.800 | 25.88 | 0.843 | 0.00217 | 41 |
0.10 | 0.72 | 0.857 | 26.05 | 0.881 | 0.00098 | 39 |
0.20 | 0.22 | 0.833 | 5.91 | 0.863 | 0.00171 | 120 |
0.20 | 0.39 | 0.833 | 15.49 | 0.865 | 0.00179 | 72 |
0.20 | 0.43 | 0.857 | 16.99 | 0.881 | 0.00098 | 65 |
0.20 | 0.46 | 0.800 | 17.61 | 0.844 | 0.00223 | 61 |
0.20 | 0.69 | 0.800 | 21.37 | 0.847 | 0.00232 | 43 |
/g溶质·g总溶剂-1 | ||||||
---|---|---|---|---|---|---|
0.05 | 0.24 | 0.833 | 25.14 | 0.854 | 0.00149 | 97 |
0.05 | 0.27 | 0.800 | 26.40 | 0.833 | 0.00164 | 72 |
0.05 | 0.43 | 0.800 | 27.41 | 0.837 | 0.00182 | 51 |
0.05 | 0.49 | 0.857 | 27.56 | 0.878 | 0.00085 | 48 |
0.05 | 0.67 | 0.833 | 27.83 | 0.861 | 0.00182 | 43 |
0.10 | 0.24 | 0.833 | 20.69 | 0.859 | 0.00144 | 93 |
0.10 | 0.26 | 0.800 | 21.31 | 0.836 | 0.00184 | 86 |
0.10 | 0.44 | 0.833 | 24.32 | 0.862 | 0.00156 | 56 |
0.10 | 0.66 | 0.800 | 25.88 | 0.843 | 0.00217 | 41 |
0.10 | 0.72 | 0.857 | 26.05 | 0.881 | 0.00098 | 39 |
0.20 | 0.22 | 0.833 | 5.91 | 0.863 | 0.00171 | 120 |
0.20 | 0.39 | 0.833 | 15.49 | 0.865 | 0.00179 | 72 |
0.20 | 0.43 | 0.857 | 16.99 | 0.881 | 0.00098 | 65 |
0.20 | 0.46 | 0.800 | 17.61 | 0.844 | 0.00223 | 61 |
0.20 | 0.69 | 0.800 | 21.37 | 0.847 | 0.00232 | 43 |
固定参数 | 改变参数 | | | ||
---|---|---|---|---|
Xm 和 R | 增大 R | ↑ | ↑ | ↑ |
Xm 和 R | 增大R | ↓ | ↑ | ↑ |
R | 增大Xm | ↓ | ↓ | ↓ |
固定参数 | 改变参数 | | | ||
---|---|---|---|---|
Xm 和 R | 增大 R | ↑ | ↑ | ↑ |
Xm 和 R | 增大R | ↓ | ↑ | ↑ |
R | 增大Xm | ↓ | ↓ | ↓ |
1 | 黄炎, 孙海龙, 孟子超, 等. 溶析结晶在医药领域的研究进展[J]. 化工进展, 2019, 38(5): 2380-2388. |
HUANG Yan, SUN Hailong, MENG Zichao, et al. Progress in antisolvent crystallization in pharmaceutical field[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2380-2388. | |
2 | DARMALI Christine, MANSOURI Shahnaz, YAZDANPANAH Nima, et al. Mechanisms and control of impurities in continuous crystallization: A review[J]. Industrial & Engineering Chemistry Research, 2019, 58(4): 1463-1479. |
3 | WANG Ting, LU Haijiao, WANG Jingkang, et al. Recent progress of continuous crystallization[J]. Journal of Industrial and Engineering Chemistry, 2017, 54: 14-29. |
4 | 鲍颖, 王永莉, 王静康. 溶析结晶研究进展[J]. 化学工业与工程, 2004, 21(6): 438-443. |
BAO Ying, WANG Yongli, WANG Jingkang. Progress in dilution crystallization[J]. Chemical Industry and Engineering, 2004, 21(6): 438-443. | |
5 | LI Jin, SHENG Lei, Linghan TUO, et al. Membrane-assisted antisolvent crystallization: Interfacial mass-transfer simulation and multistage process control[J]. Industrial & Engineering Chemistry Research, 2020, 59(21): 10160-10171. |
6 | DI PROFIO Gianluca, STABILE Carmen, CARIDI Antonella, et al. Antisolvent membrane crystallization of pharmaceutical compounds[J]. Journal of Pharmaceutical Sciences, 2009, 98(12): 4902-4913. |
7 | BARRETT Mark, Des O'GRADY, CASEY Eoin, et al. The role of meso-mixing in anti-solvent crystallization processes[J]. Chemical Engineering Science, 2011, 66(12): 2523-2534. |
8 | LINDENBERG Christian, Martin KRÄTTLI, CORNEL Jeroen, et al. Design and optimization of a combined cooling/antisolvent crystallization process[J]. Crystal Growth & Design, 2009, 9(2): 1124-1136. |
9 | ZHAO Yingying, HOU Baohong, JIANG Xiaobin, et al. Determination of thermodynamics in various solvents and kinetics of cefuroxime sodium during antisolvent crystallization[J]. Journal of Chemical & Engineering Data, 2012, 57(3): 952-956. |
10 | KNOX Michael, TRIFKOVIC Milana, ROHANI Sohrab. Combining anti-solvent and cooling crystallization: Effect of solvent composition on yield and meta stable zone width[J]. Chemical Engineering Science, 2009, 64(16): 3555-3563. |
11 | LENKA Maheswata, SARKAR Debasis. Combined cooling and antisolvent crystallization of l-asparagine monohydrate[J]. Powder Technology, 2018, 334: 106-116. |
12 | YANG Y, NAGY Z K. Combined cooling and antisolvent crystallization in continuous mixed suspension, mixed product removal cascade crystallizers: Steady-state and startup optimization[J]. Industrial & Engineering Chemistry Research, 2015, 54(21): 5673-5682. |
13 | RAGAB D, ROHANI S, SAMAHA M W, et al. Crystallization of progesterone for pulmonary drug delivery[J]. Journal of Pharmaceutical Sciences, 2010, 99(3): 1123-1137. |
14 | LENKA Maheswata, SARKAR Debasis. Improving crystal size distribution by internal seeding combined cooling/antisolvent crystallization with a cooling/heating cycle[J]. Journal of Crystal Growth, 2018, 486: 130-136. |
15 | YANG Y, NAGY Z K. Advanced control approaches for combined cooling/antisolvent crystallization in continuous mixed suspension mixed product removal cascade crystallizers[J]. Chemical Engineering Science, 2015, 127: 362-373. |
16 | ROSA C A DA, BRAATZ R D. OpenCrys: Open-source software for the multiscale modeling of combined antisolvent and cooling crystallization in turbulent flow[J]. Industrial & Engineering Chemistry Research, 2018, 57(34): 11702-11711. |
17 | 欧雪娇, 张春桃, 李雪伟, 等. 膜结晶技术的研究进展[J]. 现代化工, 2016, 36(8): 14-18. |
Xuejiao OU, ZHANG Chuntao, LI Xuewei, et al. Advances in membrane crystallization technology[J]. Modern Chemical Industry, 2016, 36(8): 14-18. | |
18 | 邵冠瑛, 贺高红, 姜晓滨. 膜辅助添加晶种的过硫酸铵冷却结晶在线监测与过程调控[J]. 化工进展, 2022, 41(12): 6226-6234. |
SHAO Guanying, HE Gaohong, JIANG Xiaobin. On-line monitoring and process control of membrane-assisted seeding for ammonium persulfate cooling crystallization[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6226-6234. | |
19 | 孙国鑫, 苟萌萱, 周诚, 等. 高浓度Na+//NO3 -, SO4 2--H2O溶液的膜蒸馏结晶耦合过程调控[J]. 化工学报, 2022, 73(7): 3078-3089. |
SUN Guoxin, GOU Mengxuan, ZHOU Cheng, et al. Membrane distillation crystallization coupling process for the treatment of high concentration Na+//NO3 -, SO4 2--H2O solution[J]. CIESC Journal, 2022, 73(7): 3078-3089. | |
20 | 盛磊, 脱凌晗, 姜晓滨, 等. 有机膜精确调控传质的新型溶析结晶及过程强化[J]. 化工进展, 2020, 39(5): 1692-1700. |
SHENG Lei, Linghan TUO, JIANG Xiaobin, et al. Novel antisolvent crystallization and process intensification via the accurate mass transfer control of the organic membrane[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1692-1700. | |
21 | SHENG Lei, LI Jin, HE Gaohong, et al. Visual study and simulation of interfacial liquid layer mass transfer in membrane-assisted antisolvent crystallization[J]. Chemical Engineering Science, 2020, 228: 116003. |
22 | 盛磊, 李培钰, 牛宇超, 等. 微尺度过程强化的结晶颗粒制备研究进展[J]. 化工学报, 2021, 72(1): 143-157. |
SHENG Lei, LI Peiyu, NIU Yuchao, et al. Progresses in the preparation of micro-scale process-enhanced crystalline particles[J]. CIESC Journal, 2021, 72(1): 143-157. | |
23 | JIN C, CHEN D, SIRKAR K K, et al. An extended duration operation for solid hollow fiber membrane-based cooling crystallization[J]. Powder Technology, 2020, 365: 106-114. |
24 | DI PROFIO Gianluca, CURCIO Efrem, FERRARO Serena, et al. Effect of supersaturation control and heterogeneous nucleation on porous membrane surfaces in the crystallization of l-glutamic acid polymorphs[J]. Crystal Growth & Design, 2009, 9(5): 2179-2186. |
25 | SHAO Guanying, HE Zeman, XIAO Wu, et al. On-line monitoring and analysis of membrane-assisted internal seeding for cooling crystallization of ammonium persulfate[J]. Chemical Engineering Science, 2022, 263: 118081. |
26 | 郭盛争, 吴送姑, 苏鑫, 等. 莱鲍迪苷A溶解度与介稳区宽度的测定及其结晶过程研究[J]. 化工学报, 2021, 72(8): 3997-4008. |
GUO Shengzheng, WU Songgu, SU Xin, et al. Determination of solubility and metastable zone width of rebaudioside A and study on its crystallization process[J]. CIESC Journal, 2021, 72(8): 3997-4008. | |
27 | ZHOU Ling, WANG Zhao, ZHANG Meijing, et al. Determination of metastable zone and induction time of analgin for cooling crystallization[J]. Chinese Journal of Chemical Engineering, 2017, 25(3): 313-318. |
28 | RAMAKERS L A, MCGINTY J, BECKMANN W, et al. Investigation of metastable zones and induction times in glycine crystallization across three different antisolvents[J]. Crystal Growth & Design, 2020, 20(8): 4935-4944. |
29 | Jaroslav NÝVLT. Kinetics of nucleation in solutions[J]. Journal of Crystal Growth, 1968, 3/4: 377-383. |
30 | LENKA Maheswata, SARKAR Debasis. Determination of metastable zone width, induction period and primary nucleation kinetics for cooling crystallization of L[J]. Journal of Crystal Growth, 2014, 408: 85-90. |
31 | LENKA Maheswata, SARKAR Debasis. Determination of metastable zone width and nucleation kinetics for combined cooling and antisolvent crystallization of L-asparagine monohydrate in water-isopropanol mixture[J]. Journal of Crystal Growth, 2018, 501: 66-73. |
32 | DE FAVERI D, TORRE P, PEREGO P, et al. Optimization of xylitol recovery by crystallization from synthetic solutions using response surface methodology[J]. Journal of Food Engineering, 2004, 61(3): 407-412. |
33 | OUYANG Jinbo, NA Bing, LIU Zhirong, et al. Determination of solubility and nucleation kinetics of valnemulin hydrochloride solvate[J]. Journal of Solution Chemistry, 2019, 48(4): 413-426. |
34 | CHEN Xiaofeng, XU Juan, GU Jia, et al. Measurement and correlation of the solubility of gestodene in 11 pure and binary mixed solvent systems at temperatures from 283.15 to 323.15 K[J]. Journal of Chemical & Engineering Data, 2021, 66(10): 3776-3787. |
[1] | WANG Lihua, CAI Suhang, JIANG Wentao, LUO Qian, LUO Yong, CHEN Jianfeng. Research progress of micro and nano scale gas-liquid mass transfer to intensify catalytic hydrogenation of oil products [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 19-33. |
[2] | TIAN Shihong, GUO Lei, LI Na, YUWEN Chao, XU Lei, GUO Shenghui, JU Shaohua. Scientific basis and development trend of microwave heating enhanced flash evaporation process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 135-144. |
[3] | ZHAI Linxiao, CUI Yizhou, LI Chengxiang, SHI Xiaogang, GAO Jinsen, LAN Xingying. Research and application process of microbubble generator [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 111-123. |
[4] | SU Mengjun, LIU Jian, XIN Jing, CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao. Progress in the application of gas-liquid mixing intensification in fixed-bed hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 100-110. |
[5] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
[6] | WANG Zizong, LIU Gang, WANG Zhenwei. Progress and reflection on process intensification technology for ethylene/propylene production [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1669-1676. |
[7] | XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong. Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107. |
[8] | YAN Peng, CHENG Yi. Numerical simulation of membrane reactor of methane steam reforming for distributed hydrogen production [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3446-3454. |
[9] | SHI Yici, PAN Yanqiu, WANG Chengyu, FAN Jiahe, YU Lu. Experimental investigations on Joule effect enhanced air gap membrane distillation for water desalination [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2285-2291. |
[10] | SUN Xun, ZHAO Yue, XUAN Xiaoxu, ZHAO Shan, YOON Joon Yong, CHEN Songying. Advances in process intensification based on hydrodynamic cavitation [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2243-2255. |
[11] | SONG Fei, WANG Junyan, HE Lin, SUI Hong, LI Xingang. Surfactant enhancement of bubbling for separation of residual solvent from oil sands residue after solvent extraction [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2007-2014. |
[12] | HAN Fen, YANG Na, SUN Yongli, JIANG Bin, XIAO Xiaoming, ZHANG Lyuhong. Removal of emulsified water in oil by glass fiber coalescer [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6723-6732. |
[13] | CHANG Tian, WANG Yu, ZHAO Zuotong, HU Jinchao, SHEN Zhenxing. Optimization of catalytic oxidation of trichloroethylene over Mn-Ce/HZSM-5 using response surface methodology [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5830-5842. |
[14] | LENG Nanjiang, MA Guoguang, ZHANG Tao, LEI Yang, PENG Hao, XIONG Zuoshuai, CHEN Yuting. Research and exploration on purification of natural gas with high organic sulfur content [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5342-5353. |
[15] | WANG Yuhan, SHEN Chong, SU Yuanhai. Fundamentals and research progress of photochemical microreaction technology [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4749-4761. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |