Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4636-4648.DOI: 10.16085/j.issn.1000-6613.2022-1932
• Industrial catalysis • Previous Articles Next Articles
WANG Jingang1(), ZHANG Jianbo1, TANG Xuejiao2(), LIU Jinpeng2, JU Meiting2
Received:
2022-10-18
Revised:
2023-01-11
Online:
2023-09-28
Published:
2023-09-15
Contact:
TANG Xuejiao
王晋刚1(), 张剑波1, 唐雪娇2(), 刘金鹏2, 鞠美庭2
通讯作者:
唐雪娇
作者简介:
王晋刚(1976—),男,博士,副教授,硕士生导师,研究方向为大气污染防治。E-mail:thunk@126.com。
基金资助:
CLC Number:
WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648.
王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1932
1 | XIE Lijuan, LIU Chang, DENG Yun, et al. Promotion effect of Fe species on SO2 resistance of Cu-SSZ-13 catalysts for NO x reduction by NH3 [J]. Industrial & Engineering Chemistry Research, 2022, 61(25): 8698-8707. |
2 | HE Hong, WANG Yuesi, MA Qingxin, et al. Mineral dust and NO x promote the conversion of SO2 to sulfate in heavy pollution days[J]. Scientific Reports, 2014, 4: 4172. |
3 | HERNÁNDEZ-SALGADO Gabriela I, LÓPEZ-CURIEL Julio C, FUENTES Gustavo A. A comparative study of the NH3-SCR activity of Cu/SSZ-39 and Cu/SSZ-13 with similar Cu/Al ratios[J]. Topics in Catalysis, 2022, 65(13): 1495-1504. |
4 | KIM Chang Hwan, QI Gongshin, DAHLBERG Kevin, et al. Strontium-doped perovskites rival platinum catalysts for treating NO x in simulated diesel exhaust[J]. Science, 2010, 327(5973): 1624-1627. |
5 | Sunil KUMAR M, ALPHIN M S. Influence of Fe-Cu-SSZ-13 and hybrid Fe-Cu-SSZ-13 zeolite catalyst in ammonia-selective catalytic reduction (NH3-SCR) of NO x [J].Reaction Kinetics, Mechanisms and Catalysis, 2022, 135(5): 2551-2563. |
6 | PAOLUCCI C, KHURANA I, PAREKH A A, et al. Dynamic multinuclear sites formed by mobilized copper ions in NO x selective catalytic reduction[J]. Science, 2017, 357(6354): 898-903. |
7 | DAHLIN Sandra, ENGLUND Johanna, MALM Henrik, et al. Effect of biofuel- and lube oil-originated sulfur and phosphorus on the performance of Cu-SSZ-13 and V2O5-WO3/TiO2 SCR catalysts[J]. Catalysis Today, 2021, 360: 326-339. |
8 | DAYA Rohil, TRANDAL Dylan, DADI Rama Krishna, et al. Kinetics and thermodynamics of ammonia solvation on Z2Cu, ZCuOH and ZCu sites in Cu-SSZ-13—Implications for hydrothermal aging[J]. Applied Catalysis B: Environmental, 2021, 297: 120444. |
9 | MA Lei, CHENG Yisun, CAVATAIO Giovanni, et al. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NO x in diesel exhaust[J]. Chemical Engineering Journal, 2013, 225: 323-330. |
10 | BECHER Johannes, SANCHEZ Dario Ferreira, DORONKIN Dmitry E, et al. Chemical gradients in automotive Cu-SSZ-13 catalysts for NO x removal revealed by operando X-ray spectrotomography[J]. Nature Catalysis, 2020, 4(1): 46-53. |
11 | SHIH Arthur J, GONZÁLEZ Juan M, KHURANA Ishant, et al. Influence of ZCuOH, Z2Cu, and extraframework Cu x O y species in Cu-SSZ-13 on N2O formation during the selective catalytic reduction of NO x with NH3 [J]. ACS Catalysis, 2021, 11(16): 10362-10376. |
12 | XI Yuanzhou, SU Changsheng, OTTINGER Nathan A, et al. Effects of hydrothermal aging on the sulfur poisoning of a Cu-SSZ-13 SCR catalyst[J]. Applied Catalysis B: Environmental, 2021, 284: 119749. |
13 | 吕叶, 胡彤宇, 郭翠梨. SSZ-13分子筛合成及改性研究进展[J]. 化工进展, 2019, 38(4): 1721-1729. |
Ye LYU, HU Tongyu, GUO Cuili. Progress in synthesis and modification of SSZ-13 zeolite[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1721-1729. | |
14 | CHEN Zhiqiang, YE Tianle, QU Hongxia, et al. Progressive regulation of Al sites and Cu distribution to increase hydrothermal stability of hierarchical SSZ-13 for the selective catalytic reduction reaction[J]. Applied Catalysis B: Environmental, 2022, 303: 120867. |
15 | BORDIGA Silvia, REGLI Laura, COCINA Donato, et al. Assessing the acidity of high silica chabazite H-SSZ-13 by FTIR using CO as molecular probe: Comparison with H-SAPO-34[J]. The Journal of Physical Chemistry B, 2005, 109(7): 2779-2784. |
16 | BORDIGA Silvia, REGLI Laura, LAMBERTI Carlo, et al. FTIR adsorption studies of H2O and CH3OH in the isostructural H-SSZ-13 and H-SAPO-34: Formation of H-bonded adducts and protonated clusters[J]. The Journal of Physical Chemistry B, 2005, 109(16): 7724-7732. |
17 | KIM Young Jin, LEE Jun Kyu, MIN Kyung Myung, et al. Hydrothermal stability of CuSSZ13 for reducing NO x by NH3 [J]. Journal of Catalysis, 2014, 311: 447-457. |
18 | BEALE A M, GAO F, LEZCANO-GONZALEZ I, et al. Recent advances in automotive catalysis for NO x emission control by small-pore microporous materials[J]. Chemical Society Reviews, 2015, 44(20): 7371-7405. |
19 | WANG Jihui, ZHAO Huawang, HALLER Gary, et al. Recent advances in the selective catalytic reduction of NO x with NH3 on Cu-Chabazite catalysts[J]. Applied Catalysis B: Environmental, 2017, 202: 346-354. |
20 | FAN Chi, MING Shujun, CHEN Zhen, et al. Cold start wetting effect on the catalytic property and hydrothermal stability of a Cu-SSZ-13 catalyst for NH3-SCR[J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12304-12312. |
21 | MOHAN Sooraj, DINESHA P, KUMAR Shiva. NO x reduction behaviour in copper zeolite catalysts for ammonia SCR systems: A review[J]. Chemical Engineering Journal, 2020, 384: 123253. |
22 | JIANG Han, GUAN Bin, PENG Xuesong, et al. Effect of sulfur poisoning on the performance and active sites of Cu/SSZ-13 catalyst[J]. Chemical Engineering Science, 2020, 226: 115855. |
23 | SHAN Yulong, SUN Yu, DU Jinpeng, et al. Hydrothermal aging alleviates the inhibition effects of NO2 on Cu-SSZ-13 for NH3-SCR[J]. Applied Catalysis B: Environmental, 2020, 275: 119105. |
24 | WANG Chen, CHEN Zexiang, WANG Jun, et al. Unraveling the nature of sulfur poisoning on Cu/SSZ-13 as a selective reduction catalyst[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118: 38-47. |
25 | DENG Di, DENG Shujun, HE Dandan, et al. A comparative study of hydrothermal aging effect on cerium and lanthanum doped Cu/SSZ-13 catalysts for NH3-SCR[J]. Journal of Rare Earths, 2021, 39(8): 969-978. |
26 | MARTINI A, BORFECCHIA E, LOMACHENKO K A, et al. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: A multivariate XAS/FTIR approach to complexity[J]. Chemical Science, 2017, 8(10): 6836-6851. |
27 | SONG James, WANG Yilin, WALTER Eric D, et al. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: Implications from atomic-level understanding of hydrothermal stability[J]. ACS Catalysis, 2017, 7(12): 8214-8227. |
28 | LI Hui, PAOLUCCI Christopher, KHURANA Ishant, et al. Consequences of exchange-site heterogeneity and dynamics on the UV-visible spectrum of Cu-exchanged SSZ-13[J]. Chemical Science, 2019, 10(8): 2373-2384. |
29 | BUSCA Guido, LIETTI Luca, RAMIS Gianguido, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NO x by ammonia over oxide catalysts: A review[J]. Applied Catalysis B: Environmental, 1998, 18(1/2): 1-36. |
30 | LI Junhua, CHANG Huazhen, MA Lei, et al. Low-temperature selective catalytic reduction of NO x with NH3 over metal oxide and zeolite catalysts—A review[J]. Catalysis Today, 2011, 175(1): 147-156. |
31 | GREENAWAY Alex G, Ines LEZCANO-GONZALEZ, Miren AGOTE-ARAN, et al. Operando spectroscopic studies of Cu-SSZ-13 for NH3-SCR deNO x investigates the role of NH3 in observed Cu(Ⅱ) reduction at high NO conversions[J]. Topics in Catalysis, 2018, 61(3): 175-182. |
32 | JANSSENS Ton V W, FALSIG Hanne, LUNDEGAARD Lars F, et al. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia[J]. ACS Catalysis, 2015, 5(5): 2832-2845. |
33 | NEGRI Chiara, SIGNORILE Matteo, PORCARO Natale G, et al. Dynamic CuⅡ/CuⅠ speciation in Cu-CHA catalysts by in situ Diffuse Reflectance UV-vis-NIR spectroscopy[J]. Applied Catalysis A: General, 2019, 578: 1-9. |
34 | GAO Feng, János SZANYI. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts[J]. Applied Catalysis A: General, 2018, 560: 185-194. |
35 | LADSHAW Austin, PIHL Josh. Measurement and modeling of the effects of exhaust composition and hydrothermal aging on the ammonia storage capacity of a commercial Cu-SSZ-13 catalyst[J]. Applied Catalysis B: Environmental, 2022, 303: 120898. |
36 | WANG Di, JANGJOU Yasser, LIU Yong, et al. A comparison of hydrothermal aging effects on NH3-SCR of NO x over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Applied Catalysis B: Environmental, 2015, 165: 438-445. |
37 | MALOLA Sami, SVELLE Stian, BLEKEN Francesca Lønstad, et al. Detailed reaction paths for zeolite dealumination and desilication from density functional calculations[J]. Angewandte Chemie International Edition, 2012, 51(3): 652-655. |
38 | LEISTNER Kirsten, KUMAR Ashok, KAMASAMUDRAM Krishna, et al. Mechanistic study of hydrothermally aged Cu/SSZ-13 catalysts for ammonia-SCR[J]. Catalysis Today, 2018, 307: 55-64. |
39 | SHI Lu, YANG Jiaqiang, SHEN Gurong, et al. The influence of adjacent Al atoms on the hydrothermal stability of H-SSZ-13: A first-principles study[J]. Physical Chemistry Chemical Physics, 2020, 22(5): 2930-2937. |
40 | ZHANG Li, WANG Di, LIU Yong, et al. SO2 poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst[J]. Applied Catalysis B: Environmental, 2014, 156/157: 371-377. |
41 | WIJAYANTI Kurnia, XIE Kunpeng, KUMAR Ashok, et al. Effect of gas compositions on SO2 poisoning over Cu/SSZ-13 used for NH3-SCR[J]. Applied Catalysis B: Environmental, 2017, 219: 142-154. |
42 | WANG Aiyong, OLSSON Louise. Insight into the SO2 poisoning mechanism for NO x removal by NH3-SCR over Cu/LTA and Cu/SSZ-13[J]. Chemical Engineering Journal, 2020, 395: 125048. |
43 | JANGJOU Yasser, Quan DO, GU Yuntao, et al. Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure[J]. ACS Catalysis, 2018, 8(2): 1325-1337. |
44 | HAMMERSHØI Peter S, VENNESTRØM Peter N R, FALSIG Hanne, et al. Importance of the Cu oxidation state for the SO2-poisoning of a Cu-SAPO-34 catalyst in the NH3-SCR reaction[J]. Applied Catalysis B: Environmental, 2018, 236: 377-383. |
45 | HAMMERSHØI Peter S, JANGJOU Yasser, EPLING William S, et al. Reversible and irreversible deactivation of Cu-CHA NH3-SCRcatalysts by SO2 and SO3 [J]. Applied Catalysis B: Environmental, 2018, 226: 38-45. |
46 | SU Wenkang, LI Zhenguo, ZHANG Yani, et al. Identification of sulfate species and their influence on SCR performance of Cu/CHA catalyst[J]. Catalysis Science & Technology, 2017, 7(7): 1523-1528. |
47 | KIM Young Jin, KIM Pyung Soon, KIM Chang Hwan. Deactivation mechanism of Cu/Zeolite SCR catalyst under high-temperature rich operation condition[J]. Applied Catalysis A: General, 2019, 569: 175-180. |
48 | 高深. Cu-SSZ-13分子筛催化剂NH3-SCR性能研究[D]. 上海: 上海交通大学, 2019. |
GAO Shen. Study on performance of Cu-SSZ-13 molecular sieve catalyst for NH3-SCR[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
49 | FICKEL Dustin W, LOBO Raul F. Copper coordination in Cu-SSZ-13 and Cu-SSZ-16 investigated by variable-temperature XRD[J]. The Journal of Physical Chemistry C, 2010, 114(3): 1633-1640. |
50 | GAO Feng, WALTER Eric D, KARP Eric M, et al. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. Journal of Catalysis, 2013, 300: 20-29. |
51 | PAOLUCCI Christopher, PAREKH Atish A, KHURANA Ishant, et al. Catalysis in a cage: Condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites[J]. Journal of the American Chemical Society, 2016, 138(18): 6028-6048. |
52 | LI Shihan, KONG Haiyu, ZHANG Weiping. A density functional theory modeling on the framework stability of Al-rich Cu-SSZ-13 zeolite modified by metal ions[J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5675-5685. |
53 | DINGEMANS G, TERLINDEN N M, VERHEIJEN M A, et al. Controlling the fixed charge and passivation properties of Si(100)/Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition[J]. Journal of Applied Physics, 2011, 110(9): 093715. |
54 | WU Huibin, ZHANG Bin, LIANG Haojie, et al. Distance effect of Ni-Pt dual sites for active hydrogen transfer in tandem reaction[J]. The Innovation, 2020, 1(2): 100029. |
55 | KIM Hyungjun, LEE Han-Bo-Ram, W-J MAENG. Applications of atomic layer deposition to nanofabrication and emerging nanodevices[J]. Thin Solid Films, 2009, 517(8): 2563-2580. |
56 | ZHANG Tao, SHI Juan, LIU Jian, et al. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH3 [J]. Applied Surface Science, 2016, 375: 186-195. |
57 | TIAN Heyuan, PING Yuan, ZHANG Yibo, et al. Atomic layer deposition of silica to improve the high-temperature hydrothermal stability of Cu-SSZ-13 for NH3 SCR of NO x [J]. Journal of Hazardous Materials, 2021, 416: 126194. |
58 | MA Yue, CHENG Songqi, WU Xiaodong, et al. Improved hydrothermal durability of Cu-SSZ-13 NH3-SCR catalyst by surface Al modification: Affinity and passivation[J]. Journal of Catalysis, 2022, 405: 199-211. |
59 | YUE Ying-Hong, TANG Yi, LIU Yi, et al. Chemical liquid deposition zeolites with controlled pore-opening size and shape-selective separation of isomers[J]. Industrial & Engineering Chemistry Research, 1996, 35(2): 430-433. |
60 | HAN L P, CAI S X, GAO M, et al. Selective catalytic reduction of NO x with NH3 by using novel catalysts: State of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976. |
61 | SALAZAR Mariam, HOFFMANN Stefanie, TILLMANN Lukas, et al. Hybrid catalysts for the selective catalytic reduction (SCR) of NO by NH3: Precipitates and physical mixtures[J]. Applied Catalysis B: Environmental, 2017, 218: 793-802. |
62 | MARTINOVIC Ferenc, DEORSOLA Fabio Alessandro, ARMANDI Marco, et al. Composite Cu-SSZ-13 and CeO2-SnO2 for enhanced NH3-SCR resistance towards hydrocarbon deactivation[J]. Applied Catalysis B: Environmental, 2021, 282: 119536. |
63 | YU Rui, ZHAO Zhenchao, HUANG Shengjun, et al. Cu-SSZ-13 zeolite-metal oxide hybrid catalysts with enhanced SO2-tolerance in the NH3-SCR of NO x [J]. Applied Catalysis B: Environmental, 2020, 269: 118825. |
64 | LIU Qingling, FU Zhenchao, MA Lei, et al. MnO x -CeO2 supported on Cu-SSZ-13: A novel SCR catalyst in a wide temperature range[J]. Applied Catalysis A: General, 2017, 547: 146-154. |
65 | SHRESTHA Sachi, HAROLD Michael P, KAMASAMUDRAM Krishna, et al. Selective oxidation of ammonia to nitrogen on bi-functional Cu-SSZ-13 and Pt/Al2O3 monolith catalyst[J]. Catalysis Today, 2016, 267: 130-144. |
66 | USUI Toyohiro, LIU Zhendong, Sayoko IBE, et al. Improve the hydrothermal stability of Cu-SSZ-13 zeolite catalyst by loading a small amount of Ce[J]. ACS Catalysis, 2018, 8(10): 9165-9173. |
67 | DU Jinpeng, WANG Jingyi, SHI Xiaoyan, et al. Promoting effect of Mn on in situ synthesized Cu-SSZ-13 for NH3-SCR[J]. Catalysts, 2020, 10(12): 1375. |
68 | WANG Yingjie, SHI Xiaoyan, SHAN Yulong, et al. Hydrothermal stability enhancement of Al-rich Cu-SSZ-13 for NH3 selective catalytic reduction reaction by ion exchange with cerium and samarium[J]. Industrial & Engineering Chemistry Research, 2020, 59(14): 6416-6423. |
69 | ZHAO Zhenchao, YU Rui, SHI Chuan, et al. Rare-earth ion exchanged Cu-SSZ-13 zeolite from organotemplate-free synthesis with enhanced hydrothermal stability in NH3-SCR of NO x [J]. Catalysis Science & Technology, 2019, 9(1): 241-251. |
70 | CHANG Huazhen, CHEN Xiaoyin, LI Junhua, et al. Improvement of activity and SO2 tolerance of Sn-modified MnO x –CeO2 catalysts for NH3-SCR at low temperatures[J]. Environmental Science & Technology, 2013, 47(10): 5294-5301. |
71 | HOU Xinxin, CHEN Hongping, LIANG Yinghua, et al. Pr-doped modified Fe-Mn/TiO2 catalysts with a high activity and SO2 tolerance for NH3-SCR at low-temperature[J].Catalysis Letters, 2020, 150(4): 1041-1048. |
72 | LI Chengxu, XIONG Zhibo, DU Yanping, et al. Promotional effect of tungsten modification on magnetic iron oxide catalyst for selective catalytic reduction of NO with NH3 [J]. Journal of the Energy Institute, 2020, 93(5): 1809-1818. |
73 | REN Limin, ZHU Longfeng, YANG Chengguang, et al. Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NO x by NH3 [J]. Chemical Communications, 2011, 47(35): 9789-9791. |
74 | CHEN Zhiqiang, GUO Lei, QU Hongxia, et al. Controllable positions of Cu2+ to enhance low-temperature SCR activity on novel Cu-Ce-La-SSZ-13 by a simple one-pot method[J]. Chemical Communications, 2020, 56(15): 2360-2363. |
75 | WANG Jingang, LIU Jinzhou, TANG Xuejiao, et al. The promotion effect of niobium on the low-temperature activity of Al-rich Cu-SSZ-13 for selective catalytic reduction of NO x with NH3 [J]. Chemical Engineering Journal, 2021, 418: 129433. |
76 | ZHAO Yingying, CHOI Byungchul, KIM Daeseok. Effects of Ce and Nb additives on the de-NO x performance of SCR/CDPF system based on Cu-beta zeolite for diesel vehicles[J]. Chemical Engineering Science, 2017, 164: 258-269. |
77 | XU Ruinian, WANG Ziyang, LIU Ning, et al. Understanding Zn functions on hydrothermal stability in a one-pot synthesized Cu&Zn-SSZ-13 catalyst for NH3 selective catalytic reduction[J]. ACS Catalysis, 2020, 10(11): 6197-6212. |
78 | CHEN Mengyang, LI Junyan, XUE Wenjuan, et al. Unveiling secondary-ion-promoted catalytic properties of Cu-SSZ-13 zeolites for selective catalytic reduction of NO x [J]. Journal of the American Chemical Society, 2022, 144(28): 12816-12824. |
79 | WANG Jingang, ZHANG Jianbo, XING Cheng, et al. Unique responses of Cu-SSZ-13 toward phosphorus: Al atoms on zeolite framework versus varied Cu species[J]. Chemical Engineering Journal, 2023, 455: 140379. |
80 | WANG Jiancheng, PENG Zhaoliang, QIAO Hui, et al. Cerium-stabilized Cu-SSZ-13 catalyst for the catalytic removal of NO x by NH3 [J]. Industrial & Engineering Chemistry Research, 2016, 55(5): 1174-1182. |
81 | TAN Wei, LIU Annai, XIE Shaohua, et al. Ce-Si mixed oxide: A high sulfur resistant catalyst in the NH3-SCR reaction through the mechanism-enhanced process[J]. Environmental Science & Technology, 2021, 55(6): 4017-4026. |
82 | KAMBUR Ayca, POZAN Gulin Selda, Ismail BOZ. Preparation, characterization and photocatalytic activity of TiO2-ZrO2 binary oxide nanoparticles[J]. Applied Catalysis B: Environmental, 2012, 115-116: 149-158. |
83 | SI Zhichun, WENG Duan, WU Xiaodong, et al. Lattice oxygen mobility and acidity improvements of NiO-CeO2-ZrO2 catalyst by sulfation for NO x reduction by ammonia[J]. Catalysis Today, 2013, 201: 122-130. |
84 | XUE Hongyan, MENG Tao, LIU Fangfang, et al. Enhanced resistance to calcium poisoning on Zr-modified Cu/ZSM-5 catalysts for the selective catalytic reduction of NO with NH3 [J]. RSC Advances, 2019, 9(66): 38477-38485. |
85 | Siva Sankar Reddy Putluru, Riisager Anders, Fehrmann Rasmus. The effect of acidic and redox properties of V2O5/CeO2-ZrO2 catalysts in selective catalytic reduction of NO by NH3 [J]. Catalysis Letters, 2009, 133(3): 370-375. |
86 | SHEN Boxiong, WANG Yinyin, WANG Fumei, et al. The effect of Ce-Zr on NH3-SCR activity over MnO x (0.6)/Ce0.5Zr0.5O2 at low temperature[J]. Chemical Engineering Journal, 2014, 236: 171-180. |
87 | ZHAO Qi, CHEN Bingbing, BAI Zhifeng, et al. Hybrid catalysts with enhanced C3H6 resistance for NH3-SCR of NO x [J]. Applied Catalysis B: Environmental, 2019, 242: 161-170. |
88 | SALAZAR Mariam, BECKER Ralf, Wolfgang GRÜNERT. Hybrid catalysts—An innovative route to improve catalyst performance in the selective catalytic reduction of NO by NH3 [J]. Applied Catalysis B: Environmental, 2015, 165: 316-327. |
89 | LIU Jinzhou, TANG Xuejiao, XING Cheng, et al. Niobium modification for improving the high-temperature performance of Cu-SSZ-13 in selective catalytic reduction of NO by NH3 [J]. Journal of Solid State Chemistry, 2021, 296: 122028. |
90 | 郭蕾.核壳Cu-Ce-La-SSZ-13的制备、表征及催化性能研究[D].南京:南京理工大学,2018. |
GUO Lei. The synthesis, characterization and SCR performance of core-shell structure Cu-Ce-La-SSZ-13[D]. Nanjing: Nanjing University of Science and Technology, 2018. | |
91 | ZHANG Tao, QIU Feng, LI Junhua. Design and synthesis of core-shell structured meso-Cu-SSZ-13@mesoporous aluminosilicate catalyst for SCR of NO x with NH3: Enhancement of activity, hydrothermal stability and propene poisoning resistance[J]. Applied Catalysis B: Environmental, 2016, 195: 48-58. |
[1] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[2] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[3] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[4] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[5] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[6] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
[7] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
[8] | CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Development of thermally stable fiber-based air filter materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2439-2453. |
[9] | YU Jie, ZHANG Wenlong. Development status and progress of lithium ion battery separator [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1760-1768. |
[10] | YE Haixing, CHEN Yuhao, CHEN Yi, SUN Haixiang, NIU Qingshan. Research progress of composite nanofiltration membrane for magnesium and lithium separation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1934-1943. |
[11] | FAN Sihan, YU Guoxi, LAI Chaochao, HE Huan, HUANG Bin, PAN Xuejun. Effect of abiotic modification on photochemical activity of anaerobic microbial products [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2180-2189. |
[12] | ZHAO Chongyang, ZHAO Lei, SHI Xiangwen, HUANG Jun, LI Zhiyao, SHEN Kai, ZHANG Yaping. Effect of O2/H2O/SO2 on the adsorption of PbCl2 by modified iron-rich attapulgite at high temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2190-2200. |
[13] | YANG Maofei, LI Jinwang, ZHOU Liuwei. Heat transfer performance of hydrophilic modified ultra-thin flat heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 692-698. |
[14] | HOU Limin, XU Jie, FU Shancong, WU Wenfei. Effect of Cu modification on NH3-SCR denitration of rare earth tailings catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 765-773. |
[15] | HAO Xubo, NIU Baolian, GUO Haotian, XU Xianghe, ZHANG Zhongbin, LI Yinglin. Modification of microencapsulated phase change material and its utilization in photothermal conversion [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 854-871. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |