1 |
SHAO Zongping, HAILE Sossina M, Jeongmin AHN, et al. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density[J]. Nature, 2005, 435(7043): 795-798.
|
2 |
C-M SPADACCINI, PECK J, I-A WAITZ. Catalytic combustion systems for microscale gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129: 49-60.
|
3 |
WANG Hu, DENEYS REITZ Rolf, YAO Mingfa, et al. Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction[J]. Combustion and Flame, 2013, 160(3): 504-519.
|
4 |
JIN Chao, YAO Mingfa, LIU Haifeng, et al. Progress in the production and application of n-butanol as a biofuel[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 4080-4106.
|
5 |
ZHANG Peng, RAN Jingyu, QIN Changlei, et al. Effects of methane addition on exhaust gas emissions and combustion efficiency of the premixed n-heptane/air combustion[J]. Energy & Fuels, 2018, 32(3): 3900-3907.
|
6 |
LI Youping, ZHANG Yiran, ZHAN Reggie, et al. Experimental and kinetic modeling study of ammonia addition on PAH characteristics in premixed n-heptane flames[J]. Fuel Processing Technology, 2021, 214: 106682.
|
7 |
GONG Zhen, FENG Liyan, WEI Lai, et al. Shock tube and kinetic study on ignition characteristics of lean methane/n-heptane mixtures at low and elevated pressures[J]. Energy, 2020, 197: 117242.
|
8 |
HERZLER J, JERIG L, ROTH P. Shock tube study of the ignition of lean n-heptane/air mixtures at intermediate temperatures and high pressures[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1147-1153.
|
9 |
HAJILOU Mohammadhadi, BROWN Matthew-Q, BROWN Marcus-C, et al. Investigation of the structure and propagation speeds of n-heptane cool flames[J]. Combustion and Flame, 2019, 208: 99-109.
|
10 |
SIRIGNANO Mariano, CIAJOLO Anna, RUSSO Carmela. Soot formation in premixed heptane-toluene flames[J]. Fuel, 2020, 265: 116920.
|
11 |
ZHONG Shenghui, XU Shijie, BAI Xuesong, et al. Combustion characteristics of n-heptane spray combustion in a low temperature reform gas/air environment[J]. Fuel, 2021, 293: 120377.
|
12 |
HANAFI Mohd Hafidzal Bin Mohd, NAKAMURA Hisashi, HASEGAWA Susumu, et al. Effects of n-butanol blends on the formation of hydrocarbons and PAHS from fuel-rich heptane combustion in a micro flow reactor with a controlled temperature profile[J]. Combustion science and technology, 2021, 193(12): 2085-2110.
|
13 |
TSANG Wing. Progress in the development of combustion kinetics databases for liquid fuels[J]. Data Science Journal, 2004, 3: 1-9.
|
14 |
HAKKA H M, CRACKNELL R F, PEKALSKI A, et al. Experimental and modeling study of ultra-rich oxidation of n-heptane[J]. Fuel, 2015, 144: 358-368.
|
15 |
ZHANG Kuiwen, BANYON Colin, BUGLER John, et al. An updated experimental and kinetic modeling study of n-heptane oxidation[J]. Combustion and Flame, 2016, 172: 116-135.
|
16 |
杨卫娟, 周俊虎, 汪洋, 等. 微尺度燃烧中的温度及热回流分布[J]. 中国电机工程学报, 2010, 30(20): 28-32.
|
|
YANG Weijuan, ZHOU Junhu, WANG Yang, et al. Temperature and thermal reflux distribution in micro-scale combustion[J]. Proceedings of the CSEE, 2010, 30(20): 28-32.
|
17 |
LI Fan, YANG Haolin, ZHANG Jianqiao, et al. OH-PLIF investigation of Y2O3-ZrO2 coating improving flame stability in a narrow channel[J]. Chemical Engineering Journal, 2021, 405: 126708.
|
18 |
YANG Weijuan, WANG Yefeng, ZHOU Junhu, et al. Simulation of hetero/homogeneous combustion characteristics of CH4/air in a half packed-bed catalytic combustor[J]. Chemical Engineering Science, 2020, 211: 115247.
|
19 |
WILLIAMS Kenneth A, SCHMIDT Lanny D. Catalytic autoignition of higher alkane partial oxidation on Rh-coated foams[J]. Applied Catalysis A: General, 2006, 299: 30-45.
|
20 |
黄眺, 杨卫娟, 周俊虎, 等. 微型圆管中正庚烷/空气预混催化燃烧特性实验[J]. 浙江大学学报(工学版), 2016, 50(11): 2058-2063.
|
|
HUANG Tiao, YANG Weijuan, ZHOU Junhu, et al. Experimental study on catalytic combustion characteristics of n-heptane/air premixed catalysts in microtubes[J]. Journal of Zhejiang University(Engineering Science), 2016, 50(11): 2058-2063.
|
21 |
LU Qingbo, PAN Jianfeng, YANG Wenming, et al. Effects of products from heterogeneous reactions on homogeneous combustion for H2/O2 mixture in the micro combustor[J]. Applied Thermal Engineering, 2016, 102: 897-903.
|
22 |
CHEN Guanbang, CHEN Chih Peng, WU Chih Yung, et al. Effects of catalytic walls on hydrogen/air combustion inside a micro-tube[J]. Applied Catalysis A: General, 2007, 332(1): 89-97.
|
23 |
YANG Weijuan, WANG Yefeng, ZHOU Junhu, et al. Catalytic self-sustaining combustion of the alkanes with Pt/ZSM-5 packed bed in a microscale tube[J]. Chemical Engineering Science, 2017, 158: 30-36.
|
24 |
物质物性计算查询平台[EB/OL].[2022-10-17]. .
|
|
Material Property Calculation Query Platform[EB/OL]. [2022-10-17]. .
|
25 |
GONG Chunming, NING Hongbo, XU Jiaqi, et al. Experimental and modeling study of thermal and catalytic cracking of n-decane[J]. Journal of Analytical and Applied Pyrolysis, 2014, 110: 463-469.
|
26 |
BENARD Sandrine, BAYLET Alexandre, VERNOUX Philippe, et al. Kinetics of the propene oxidation over a Pt/alumina catalyst[J]. Catalysis Communications, 2013, 36: 63-66.
|
27 |
ZHANG Weikuo, CHEN Zheng, KONG Wenjun. Effects of diluents on the ignition of premixed H2/air mixtures[J]. Combustion and Flame, 2012, 159(1): 151-160.
|
28 |
徐侃, 刘明侯, 张先锋, 等. 表面催化反应对小尺度空间内气相燃烧的影响[J]. 燃烧科学与技术, 2009, 15(2): 187-191.
|
|
XU Kan, LIU Minghou, ZHANG Xianfeng, et al. The effect of surface catalytic reaction on gas phase combustion in small scale space[J]. Journal of Combustion Science and Technology, 2009, 15(2): 187-191.
|
29 |
徐露, 周俊虎, 张兴, 等. 贫氧条件下正癸烷在Pt/ZSM-5上的催化燃烧特性[J]. 化工进展, 2022, 41(1): 146-152.
|
|
XU Lu, ZHOU Junhu, ZHANG Xing, et al. Catalytic combustion characteristics of n-decane on Pt/ZSM-5 under oxygen deficient conditions[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 146-152.
|
30 |
WANG Yefeng, YANG Weijuan, ZHOU Junhu, et al. Heterogeneous reaction characteristics and its effects on homogeneous combustion of methane/air mixture in microchannels Ⅱ. Chemical analysis[J]. Fuel, 2019, 235: 923-932.
|
31 |
QUICENO Raúl, Javier PÉREZ-RAMÍREZ, Jürgen WARNATZ, et al. Modeling the high-temperature catalytic partial oxidation of methane over platinum gauze: Detailed gas-phase and surface chemistries coupled with 3D flow field simulations[J]. Applied Catalysis A: General, 2006, 303(2): 166-176.
|