Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2343-2352.DOI: 10.16085/j.issn.1000-6613.2022-1276
• Energy processes and technology • Previous Articles Next Articles
XU Xian1,2(), CUI Louwei3, LIU Jie1,2, SHI Junhe1,2, ZHU Yonghong1,2, LIU Jiaojiao1,2, LIU Tao1,2, ZHENG Hua’an1,2(), LI Dong1,2()
Received:
2022-07-07
Revised:
2022-08-25
Online:
2023-06-02
Published:
2023-05-10
Contact:
ZHENG Hua’an, LI Dong
徐贤1,2(), 崔楼伟3, 刘杰1,2, 施俊合1,2, 朱永红1,2, 刘姣姣1,2, 刘涛1,2, 郑化安1,2(), 李冬1,2()
通讯作者:
郑化安,李冬
作者简介:
徐贤(1995—),男,硕士研究生,研究方向为煤焦油深加工。E-mail:1273809075@qq.com。
基金资助:
CLC Number:
XU Xian, CUI Louwei, LIU Jie, SHI Junhe, ZHU Yonghong, LIU Jiaojiao, LIU Tao, ZHENG Hua’an, LI Dong. Effect of raw material composition on the development of semicoke mesophase structure[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2343-2352.
徐贤, 崔楼伟, 刘杰, 施俊合, 朱永红, 刘姣姣, 刘涛, 郑化安, 李冬. 原料组成对半焦中间相结构发展的影响[J]. 化工进展, 2023, 42(5): 2343-2352.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1276
原料 | C/% | H/% | O/% | N/% | S/% | C/H | 喹啉不溶物(QI) /% | 平均 分子量 |
---|---|---|---|---|---|---|---|---|
FHT | 88.37 | 10.8 | 0.83 | 0 | 0 | 0.68 | 0.06 | 385 |
CTP | 83.94 | 7.61 | 7.3 | 0.75 | 0.4 | 0.92 | 0.62 | 334 |
原料 | C/% | H/% | O/% | N/% | S/% | C/H | 喹啉不溶物(QI) /% | 平均 分子量 |
---|---|---|---|---|---|---|---|---|
FHT | 88.37 | 10.8 | 0.83 | 0 | 0 | 0.68 | 0.06 | 385 |
CTP | 83.94 | 7.61 | 7.3 | 0.75 | 0.4 | 0.92 | 0.62 | 334 |
显微组分名称 | 长度/μm | 宽度/μm | 长宽比 |
---|---|---|---|
镶嵌 | <10 | <10 | |
小片 | 10~30 | 10~30 | |
大片 | >30 | >30 | |
短纤维 | <30 | <30 | 2.5 |
细纤维 | >10 | <10 | >5 |
粗纤维 | >30 | 10~30 |
显微组分名称 | 长度/μm | 宽度/μm | 长宽比 |
---|---|---|---|
镶嵌 | <10 | <10 | |
小片 | 10~30 | 10~30 | |
大片 | >30 | >30 | |
短纤维 | <30 | <30 | 2.5 |
细纤维 | >10 | <10 | >5 |
粗纤维 | >30 | 10~30 |
分类 | 峰位置/cm-1 | 质量分数/% | |
---|---|---|---|
FHT | CTP | ||
非对称RCH3 | 2953 | 13.46 | 19.64 |
非对称R2CH2 | 2920 | 45.18 | 43.63 |
非对称R3CH | 2892 | 13.63 | 11.99 |
对称RCH3 | 2872 | 4.51 | 6.72 |
对称R2CH2 | 2851 | 23.22 | 19.64 |
n(CH2)/n(CH3) | 3.36 | 2.22 | |
1H | 865 | 18.25 | 3.46 |
2H | 812 | 38.54 | 32.07 |
4H | 764 | 5.98 | 56 |
(CH2) n≥4 | 721 | 37.22 | 8.47 |
分类 | 峰位置/cm-1 | 质量分数/% | |
---|---|---|---|
FHT | CTP | ||
非对称RCH3 | 2953 | 13.46 | 19.64 |
非对称R2CH2 | 2920 | 45.18 | 43.63 |
非对称R3CH | 2892 | 13.63 | 11.99 |
对称RCH3 | 2872 | 4.51 | 6.72 |
对称R2CH2 | 2851 | 23.22 | 19.64 |
n(CH2)/n(CH3) | 3.36 | 2.22 | |
1H | 865 | 18.25 | 3.46 |
2H | 812 | 38.54 | 32.07 |
4H | 764 | 5.98 | 56 |
(CH2) n≥4 | 721 | 37.22 | 8.47 |
化学位移 | 氢的类型 | 不同氢类型的质量分数/% | |
---|---|---|---|
FHT | CTP | ||
0.5~1.1 | H γ (芳环≥γ位的CH3的H,烷烃CH3上的H) | 24.75 | 10.82 |
1.1~2.1 | H β (芳环β碳上的H及β位以远的CH、CH2上的H,烷烃CH、CH2上的H) | 52.10 | 32.46 |
2.1~4.5 | H α (与芳环α碳直接相连的H) | 14.21 | 27.49 |
6.5~9.5 | Har(芳香氢) | 8.94 | 29.24 |
化学位移 | 氢的类型 | 不同氢类型的质量分数/% | |
---|---|---|---|
FHT | CTP | ||
0.5~1.1 | H γ (芳环≥γ位的CH3的H,烷烃CH3上的H) | 24.75 | 10.82 |
1.1~2.1 | H β (芳环β碳上的H及β位以远的CH、CH2上的H,烷烃CH、CH2上的H) | 52.10 | 32.46 |
2.1~4.5 | H α (与芳环α碳直接相连的H) | 14.21 | 27.49 |
6.5~9.5 | Har(芳香氢) | 8.94 | 29.24 |
结构参数 | FHT | CTP |
---|---|---|
芳香度fa | 0.4 | 0.58 |
芳香环取代度σ | 0.56 | 0.31 |
芳香环系缩合度参数HAU/CA | 0.54 | 0.82 |
总氢原子数HT | 58.64 | 45.61 |
总碳原子数CT | 39.77 | 41.77 |
芳香碳原子数CA | 14.13 | 24.66 |
饱和碳原子数CS | 25.64 | 15.31 |
芳环系α碳原子数C α | 4.16 | 6.22 |
芳环系统外围碳原子数Cap | 7.38 | 18.68 |
芳香环系内碳原子数Ci | 6.74 | 6.98 |
芳环数RA | 3.63 | 6.17 |
总环数RT | 4.78 | 6.81 |
环烷环数RN | 1.35 | 0.64 |
环烷碳原子数CN | 5.40 | 2.58 |
平均烷基侧链碳原子数n | 4.14 | 1.65 |
平均链长参数L | 4.89 | 7.71 |
结构参数 | FHT | CTP |
---|---|---|
芳香度fa | 0.4 | 0.58 |
芳香环取代度σ | 0.56 | 0.31 |
芳香环系缩合度参数HAU/CA | 0.54 | 0.82 |
总氢原子数HT | 58.64 | 45.61 |
总碳原子数CT | 39.77 | 41.77 |
芳香碳原子数CA | 14.13 | 24.66 |
饱和碳原子数CS | 25.64 | 15.31 |
芳环系α碳原子数C α | 4.16 | 6.22 |
芳环系统外围碳原子数Cap | 7.38 | 18.68 |
芳香环系内碳原子数Ci | 6.74 | 6.98 |
芳环数RA | 3.63 | 6.17 |
总环数RT | 4.78 | 6.81 |
环烷环数RN | 1.35 | 0.64 |
环烷碳原子数CN | 5.40 | 2.58 |
平均烷基侧链碳原子数n | 4.14 | 1.65 |
平均链长参数L | 4.89 | 7.71 |
样品 | 光学显微结构质量分数/% | 总纤维 质量分数/% | |||||
---|---|---|---|---|---|---|---|
镶嵌 | 小片 | 大片 | 短纤维 | 粗纤维 | 细纤维 | ||
FHT-G1 | 14.17 | 69.57 | 16.26 | 0.00 | 0.00 | 0.00 | 0.00 |
FHT-G2 | 8.56 | 38.25 | 29.26 | 18.56 | 5.37 | 0.00 | 23.93 |
FHT-G3 | 4.26 | 12.89 | 15.79 | 28.65 | 22.77 | 15.64 | 67.06 |
FHT-G4 | 2.14 | 7.37 | 10.65 | 21.21 | 30.21 | 28.42 | 79.84 |
CTP-1 | 35.62 | 57.76 | 6.62 | 0.00 | 0.00 | 0.00 | 0.00 |
CTP-2 | 28.62 | 47.92 | 15.41 | 6.84 | 1.21 | 0.00 | 8.05 |
CTP-3 | 22.62 | 42.51 | 19.82 | 9.84 | 5.21 | 0.00 | 15.05 |
CTP-4 | 19.65 | 33.52 | 24.65 | 12.21 | 7.86 | 2.11 | 22.18 |
样品 | 光学显微结构质量分数/% | 总纤维 质量分数/% | |||||
---|---|---|---|---|---|---|---|
镶嵌 | 小片 | 大片 | 短纤维 | 粗纤维 | 细纤维 | ||
FHT-G1 | 14.17 | 69.57 | 16.26 | 0.00 | 0.00 | 0.00 | 0.00 |
FHT-G2 | 8.56 | 38.25 | 29.26 | 18.56 | 5.37 | 0.00 | 23.93 |
FHT-G3 | 4.26 | 12.89 | 15.79 | 28.65 | 22.77 | 15.64 | 67.06 |
FHT-G4 | 2.14 | 7.37 | 10.65 | 21.21 | 30.21 | 28.42 | 79.84 |
CTP-1 | 35.62 | 57.76 | 6.62 | 0.00 | 0.00 | 0.00 | 0.00 |
CTP-2 | 28.62 | 47.92 | 15.41 | 6.84 | 1.21 | 0.00 | 8.05 |
CTP-3 | 22.62 | 42.51 | 19.82 | 9.84 | 5.21 | 0.00 | 15.05 |
CTP-4 | 19.65 | 33.52 | 24.65 | 12.21 | 7.86 | 2.11 | 22.18 |
样品 | 2θ002/(°) | d002/nm | β002/(°) | 2θ100/(°) | β100/(°) | La/nm | Lc/nm | N |
---|---|---|---|---|---|---|---|---|
FTH-G1 | 25.783 | 0.3426 | 0.861 | 42.740 | 0.658 | 25.517 | 9.368 | 28.34 |
FTH-G2 | 25.803 | 0.3424 | 0.859 | 42.837 | 0.643 | 26.121 | 9.390 | 28.43 |
FTH-G2 | 25.811 | 0.3422 | 0.855 | 42.821 | 0.624 | 26.915 | 9.434 | 28.56 |
FTH-G4 | 25.836 | 0.3419 | 0.853 | 42.719 | 0.617 | 27.211 | 9.456 | 28.66 |
CTP-1 | 25.508 | 0.3463 | 0.961 | 43.14 | 0.89 | 18.891 | 8.388 | 25.22 |
CTP-2 | 25.541 | 0.3459 | 0.991 | 43.22 | 0.88 | 19.111 | 8.135 | 24.52 |
CTP-3 | 25.594 | 0.3452 | 0.996 | 43.143 | 0.869 | 19.348 | 8.095 | 24.45 |
CTP-4 | 25.605 | 0.3450 | 0.998 | 43.12 | 0.89 | 18.890 | 8.079 | 24.42 |
样品 | 2θ002/(°) | d002/nm | β002/(°) | 2θ100/(°) | β100/(°) | La/nm | Lc/nm | N |
---|---|---|---|---|---|---|---|---|
FTH-G1 | 25.783 | 0.3426 | 0.861 | 42.740 | 0.658 | 25.517 | 9.368 | 28.34 |
FTH-G2 | 25.803 | 0.3424 | 0.859 | 42.837 | 0.643 | 26.121 | 9.390 | 28.43 |
FTH-G2 | 25.811 | 0.3422 | 0.855 | 42.821 | 0.624 | 26.915 | 9.434 | 28.56 |
FTH-G4 | 25.836 | 0.3419 | 0.853 | 42.719 | 0.617 | 27.211 | 9.456 | 28.66 |
CTP-1 | 25.508 | 0.3463 | 0.961 | 43.14 | 0.89 | 18.891 | 8.388 | 25.22 |
CTP-2 | 25.541 | 0.3459 | 0.991 | 43.22 | 0.88 | 19.111 | 8.135 | 24.52 |
CTP-3 | 25.594 | 0.3452 | 0.996 | 43.143 | 0.869 | 19.348 | 8.095 | 24.45 |
CTP-4 | 25.605 | 0.3450 | 0.998 | 43.12 | 0.89 | 18.890 | 8.079 | 24.42 |
1 | ESER S, JENKINS R G. Carbonization of petroleum feedstocks I: Relationships between chemical constitution of the feedstocks and mesophase development[J]. Carbon, 1989, 27(6): 877-887. |
2 | CHENG Xianglin, ZHA Qingfang, LI Xuejun, et al. Modified characteristics of mesophase pitch prepared from coal tar pitch by adding waste polystyrene[J]. Fuel Processing Technology, 2008, 89(12): 1436-1441. |
3 | GUO Aijun, LIN Xiangqin, LIU Dong, et al. Investigation on shot-coke-forming propensity and controlling of coke morphology during heavy oil coking[J]. Fuel Processing Technology, 2012, 104: 332-342. |
4 | WANG Liyong, LIU Zhanjun, GUO Quangui, et al. Structure of silicon-modified mesophase pitch-based graphite fibers[J]. Carbon, 2015, 94:335-341. |
5 | LOU Bin, LIU Dong, FU Yue, et al. Investigation on the development and orientation of mesophase microstructure during the two-stage pyrolysis of FCC decant oil[J]. Fuel, 2020, 263: 116626. |
6 | ALVAREZ P, DÍEZ N, SANTAMARÍA R, et al. Novel coal-based precursors for cokes with highly oriented microstructures[J]. Fuel, 2012, 95: 400-406. |
7 | HALIM H P, IM J S, LEE C W. Preparation of needle coke from petroleum by-products[J]. Carbon Letters, 2013, 14(3): 152-161. |
8 | GREINKE R A. Quantitative influence of dealkylation and polymerization reactions on mesophase formation[J]. Carbon, 1990, 28(5): 701-706. |
9 | WANG X S, MATSUMOTO M, SHONO H, et al. Hydrogenation mechanism of coal tar pitch for carbon fiber (Part3). Effects of hydrotreatment on pyrolysis reactivity of each component in coal tar pitch for high performance carbon fiber[J]. Journal of the Japan Petroleum Institute, 1991, 34(4): 314-321. |
10 | YOKONO Tetsuro, MARSH Harry, YOKONO Megumi. Hydrogen donor and acceptor abilities of pitch: 1H NMR study of hydrogen transfer to anthracene[J]. Fuel, 1981, 60(7): 607-611. |
11 | YOON K E, LEE E S, KORAI Y, et al. Comparison of mesophase pitches derived from C8 and C9 aromatic hydrocarbons[J]. Carbon, 1994, 32(3): 453-459. |
12 | MIYAKE Mikio, Toru IDA, YOSHIDA Hiroshi, et al. Effects of reductively introduced alkyl groups and hydrogen to mesophase pitch on carbonization properties[J]. Carbon, 1993, 31(5): 705-714. |
13 | ZHU Yaming, ZHAO Chunlei, XU Yunliang, et al. Preparation and characterization of coal pitch-based needle coke (Part I): The effects of aromatic index (fa) in refined coal pitch[J]. Energy & Fuels, 2019, 33(4): 3456-3464. |
14 | LIU Jie, SHI Xuemei, CUI Louwei, et al. Effect of raw material composition on the structure of needle coke[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 546-553. |
15 | LIU Shizhe, XUE Jilai, LIU Xuan, et al. Pitch derived graphene oxides: Characterization and effect on pyrolysis and carbonization of coal tar pitch[J]. Journal of Analytical & Applied Pyrolysis, 2020, 145: 104746. |
16 | ESER S, JENKINS R G. Carbonization of petroleum feedstocks Ⅱ: Chemical constitution of feedstock asphaltenes and mesophase development[J]. Carbon, 1989, 27(6):889-897. |
17 | KORAI Yozo, MOCHIDA Isao. Preparation and properties of carbonaceous mesophase-i soluble mesophase produced from A240 and coal tar pitch[J]. Carbon, 1985, 23(1): 97-103. |
18 | MOCHIDA Isao, KORAI Yozo, KU Chahun, et al. Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch[J]. Carbon, 2000, 38(2): 305-328. |
19 | MOCHIDA Isao, MATSUOKA Hideichi, FUJITSU Hiroshi, et al. Carbonization properties of partially hydrogenated aromatic compounds—Ⅰ[J]. Carbon, 1981, 19(3): 213-216. |
20 | LI Ming, LIU Dong, DU Hui, et al. Preparation of mesophase pitch by aromatics-rich distillate of naphthenic vacuum gas oil[J]. Applied Petrochemical Research, 2015, 5(4): 339-346. |
21 | ZHU Yaming, ZHAO Xuefei, YUAN Ji, et al. Changes in structure of coal liquefied pitch during liquid-phase carbonization process[J]. Carbon Letters, 2019, 29(1): 37-45. |
22 | LI Ming, LIU Dong, LOU Bin, et al. Hydroalkylation modification of naphthene-based aromatic-rich fraction and its influences on mesophase development[J]. RSC Advances, 2018, 8(7): 3750-3759. |
23 | ZHANG Zhicheng, DU Huiming, GUO Shuhai, et al. Probing the effect of molecular structure and compositions in extracted oil on the characteristics of needle coke[J]. Fuel, 2021, 301: 120984. |
24 | LIU Dong, LOU Bin, LI Ming, et al. Study on the preparation of mesophase pitch from modified naphthenic vacuum residue by direct thermal treatment[J]. Energy & Fuels, 2016, 30(6): 4609-4618. |
25 | LI Ming, LIU Dong, Renqing LYU, et al. Preparation of the mesophase pitch by hydrocracking tail oil from a naphthenic vacuum residue[J]. Energy & Fuels, 2015, 29(7): 4193-4200. |
26 | MATSUMOTO Tadayuki, MOCHIDA Isao. A structural study on oxidative stabilization of mesophase pitch fibers derived from coaltar[J]. Carbon, 1992, 30(7): 1041-1046. |
27 | YUAN Guanming, LI Xuanke, XIONG Xiaoqing, et al. A comprehensive study on the oxidative stabilization of mesophase pitch-based tape-shaped thick fibers with oxygen[J]. Carbon, 2017, 115: 59-76. |
28 | KUMAR Subhash, SRIVASTAVA Manoj. Influence of presence/addition of asphaltenes on semi-coke textures and mesophase development in petroleum feed stocks[J]. Fuel, 2016, 173: 69-78. |
29 | TAYLOR G H, PENNOCK G M, FITZ GERALD J D, et al. Influence of QI on mesophase structure[J]. Carbon, 1993, 31(2):341-354. |
30 | Jun LYU, BAI Haitao, ZHU Yaming, et al. Synthesis and characterization of mesophase coke from medium-low-temperature coal tar pitch modified by high-pressure thermal polymerization[J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(4): e2643. |
31 | ZHU Yaming, ZHAO Xuefei, GAO Lijuan, et al. Study on the pyrolysis characteristic and the microstructure of the pyrolysis products of β resins from different coal tar pitch[J]. Journal Chemical Society of Pakistan, 2018, 40(2):343-353. |
32 | LI Ming, LIU Dong, LOU Bin, et al. Effects of inductive condensation on mesophase development during aromatic-rich oil carbonization[J]. Energy & Fuels, 2019, 33(8): 7200-7205. |
33 | HU Chaoshuai, CHU Hongyu, ZHU Yaming, et al. Differences and correlations between microstructure and macroscopic properties of mesophase cokes derived from the components of high temperature coal tar pitch[J]. Fuel, 2022, 310: 122330. |
34 | WANG Guohua, ESER Semih. Molecular composition of the high-boiling components of needle coke feedstocks and mesophase development[J]. Energy & Fuels, 2007, 21(6): 3563-3572. |
35 | FAN Xiaohua, FEI Youqing, CHEN Lei, et al. Distribution and structural analysis of polycyclic aromatic hydrocarbons abundant in coal tar pitch[J]. Energy & Fuels, 2017, 31(5): 4694-4704. |
36 | LOEH M O, BADACZEWSKI F, FABER K, et al. Analysis of thermally induced changes in the structure of coal tar pitches by an advanced evaluation method of X-ray scattering data[J]. Carbon, 2016, 109: 823-835. |
37 | 中华人民共和国工业和信息化部. 煤系针状焦中间相焦: [S]. 北京: 冶金工业出版社, 2020. |
Ministry of Industry and Information Technology of the People’s Republic of China. Mesophase coke of coal-based needle coke: [S]. Beijing: Metallurgical Industry Press, 2020. | |
38 | ZHU Yonghong, TIAN Feng, LIU Yaqing, et al. Comparison of the composition and structure for coal-derived and petroleum heavy subfraction by an improved separation method[J]. Fuel, 2021, 292: 120362. |
39 | DOMINGO L R, RÍOS-GUTIÉRREZ M, AURELL M J. Unveiling the regioselectivity in electrophilic aromatic substitution reactions of deactivated benzenes through molecular electron density theory[J]. New Journal of Chemistry, 2021, 45(30): 13626-13638. |
40 | CAMPUZANO F, ABDUL JAMEEL A G, ZHANG W, et al. Fuel and chemical properties of waste tire pyrolysis oil derived from a continuous twin-auger reactor[J]. Energy & Fuels, 2020, 34(10): 12688-12702. |
41 | ZHANG Zhichen, YU Enqiang, LIU Yanjun, et al. The effect of composition change and allocation in raw material on the carbonaceous structural evolution during calcination process[J]. Fuel, 2022, 309: 122173. |
42 | GUO Yanling, LI Yunmei, RAN Nani, et al. Co-carbonization effect of asphaltine and heavy oil in mesophase development[J]. Journal of Materials Science, 2016, 51(5): 2558-2564. |
[1] | BAI Zhihua, ZHANG Jun. Oxidative removal of NO in DTPMPA/Fenton system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4967-4973. |
[2] | ZHAO Jian, ZHUO Zewen, DONG Hang, GAO Wenjian. A new method for observation of microstructure of waxy crude oil and its emulsion system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4372-4384. |
[3] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[4] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[5] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[6] | CAI Juyan, SU Qiong, WANG Yanbin, WANG Hongling, LIANG Junxi, WANG Zhongxu, GUO Li, ZHAO Libin. Research progress on biodegradable foaming materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1457-1470. |
[7] | ZHANG Xinhai, ZHAO Sichen, ZHU Hui, WANG Kai, ZHANG Shoushi. Application of activated carbon fiber supported desulfurizer in mine gas environment [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 415-423. |
[8] | WANG Yinmei, ZHANG Zhaohui, LIU Shenghao, JIAO Wenze, WANG Lijin, TENG Yadong, LIU Jie. Atmospheric pressure decomposition of carbon dioxide hydrate in accelerator system [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 141-149. |
[9] | WANG Yunfei, SUN Changyu, YU Xichong, LI Qingping, CHEN Guangjin. Analysis of the methane hydrate decomposition kinetics through depressurization method by using a pilot-scale reactor [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4111-4119. |
[10] | CHEN Zhekun, PAN Weitong, YAO Dingsong, DING Lu, WANG Fuchen. Microstructure and rheology of microporous layer ink for proton exchange membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3808-3815. |
[11] | SUN Nana, SUN Huina, SHEN Lisha, SU Ruiyu, ZHAO Chao. Synergistic demulsification of magnetic nanoparticle-microwave on heavy oil O/W emulsion [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3127-3137. |
[12] | GUO Ruonan, YI Zhenwei, WANG Tao, SONG Jiayi, FANG Mengxiang. Assessment method of CO2 uptake ratio of carbonation-cured concrete based on reactive compositions [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2722-2732. |
[13] | GONG Xin, LIU Xiaodong, WEN Fushan, SHI Nan, LIU Dong. Preparation and electrochemical performance of mesocarbon microbeads derived from emulsion-polymerization method [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2379-2388. |
[14] | LIU Jing, ZHENG Xinguo, LI Tiejun, WANG Caiping, ZHAO Yanxu, LI Ying, LOU Liangwei, SHEN Wei. Mechanical properties and micromorphology of redispersible emulsified asphalt powder modified cement mortar [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2015-2021. |
[15] | XU Ming, SHAO Mingfei, LIU Qingya, DUAN Xue. Hydrogen generation from electrochemical water splitting coupling carbonate reduction [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1121-1124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |