1 |
LIU Qianwen, ZHANG Amin, WANG Ruhao, et al. A review on metal- and metal oxide-based nanozymes: Properties, mechanisms, and applications[J]. Nano-Micro Letters, 2021, 13(1): 154.
|
2 |
殷权, 李洪娟, 秦占斌, 等. 金属化合物超级电容器电极材料[J]. 化工进展, 2016, 35(S2): 200-208.
|
|
YIN Quan, LI Hongjuan, QIN Zhanbin, et al. Electrode materials of metal compound for supercapacitors[J]. Chemical Industry and Engineering Progress, 2016, 35(S2): 200-208.
|
3 |
JAGADALE S D, TELI A M, KALAKE S V, et al. Functionalized crown ether assisted morphological tuning of CuO nanosheets for electrochemical supercapacitors[J]. Journal of Electroanalytical Chemistry, 2018, 816: 99-106.
|
4 |
PATIL Amar M, LOKHANDE V C, JI T, et al. New design of all-solid state asymmetric flexible supercapacitor with high energy storage and long term cycling stability using m-CuO/FSS and h-CuS/FSS electrodes[J]. Electrochimica Acta, 2019, 307: 30-42.
|
5 |
王振威, 杨晓闪, 郑亚云, 等. CuO/Cu x S y 八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
|
|
WANG Zhenwei, YANG Xiaoshan, ZHENG Yayun, et al. Synthesis and electrochemical performance of CuO/Cu x S y octahedral core-shell structure[J]. Journal of Materials Engineering, 2020, 48(6): 98-105.
|
6 |
ZHANG Yan, GUO Wanwan, ZHENG Tianxu, et al. Engineering hierarchical Diatom@CuO@MnO2 hybrid for high performance supercapacitor[J]. Applied Surface Science, 2018, 427: 1158-1165.
|
7 |
LIU Peng, QIN Kaiqiang, WEN Shuaiwei, et al. In situ fabrication of Ni-(OH)2/Cu2O nanosheets on nanoporous NiCu alloy for high performance supercapacitor[J]. Electrochimica Acta, 2018, 283: 970-978.
|
8 |
KANG Jianli, ZHANG Shaofei, ZHANG Zhijia. Three-dimensional binder-free nanoarchitectures for advanced pseudocapacitors[J]. Advanced Materials, 2017, 29(48): 1700515.
|
9 |
PARK Yang Jeong, KIM Jung Woo, Ghafar ALI, et al. Enhancement of oxidation resistance of zirconium alloy with anodic nanoporous oxide layer in high-temperature air/steam environments[J]. Corrosion Science, 2018, 140: 217-222.
|
10 |
JIN Zeyu, Juan LYU, ZHAO Yilu, et al. Top-down synthesis of noble metal particles on high-entropy oxide supports for electrocatalysis[J]. Chemistry of Materials, 2021, 33(5): 1771-1780.
|
11 |
ZHANG Shaofei, ZHANG Zhijia, LI Hongwei, et al. Ultrahigh areal capacity of self-combusted nanoporous NiCuMn/Cu flexible anode for Li-ion battery[J]. Chemical Engineering Journal, 2020, 383: 123097.
|
12 |
BREZESINSKI Torsten, WANG John, TOLBERT Sarah H, et al. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors[J]. Nature Materials, 2010, 9(2): 146-151.
|
13 |
ZHU Qiancheng, ZHAO Danyang, CHENG Mingyu, et al. A new view of supercapacitors: Integrated supercapacitors[J]. Advance Energy Materials, 2019. DOI: 10.1002/aenm.201901081 .
|
14 |
LIU Xinyue, WANG Jianxing, YANG Guowei. Amorphous nickel oxide and crystalline manganese oxide nanocomposite electrode for transparent and flexible supercapacitor[J]. Chemical Engineering Journal, 2018, 347: 101-110.
|
15 |
SUN Guoqiang, YANG Hongsheng, ZHANG Guofeng, et al. A capacity recoverable zinc-ion micro-supercapacitor[J]. Energy & Environmental Science, 2018, 11(12): 3367-3374.
|
16 |
LI Yong, YAN Xiaoqin, ZHENG Xin, et al. Fiber-shaped asymmetric supercapacitors with ultrahigh energy density for flexible/wearable energy storage[J]. Journal of Materials Chemistry A, 2016, 4(45): 17704-17710.
|
17 |
MANJAKKAL Libu, NÚÑEZ Carlos García, DANG Wenting, et al. Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes[J]. Nano Energy, 2018, 51: 604-612.
|
18 |
SHI Chenglong, SUN Junlong, PANG Youyong, et al. A new potassium dual-ion hybrid supercapacitor based on battery-type Ni(OH)2 nanotube arrays and pseudocapacitor-type V2O5-anchored carbon nanotubes electrodes[J]. Journal of Colloid and Interface Science, 2022, 607: 462-469.
|
19 |
SAHA Sanjit, AROLE Kailash, RADOVIC Miladin, et al. One-step hydrothermal synthesis of porous Ti3C2T z MXene/rGO gels for supercapacitor applications[J]. Nanoscale, 2021, 13(39): 16543-16553.
|