Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (2): 854-871.DOI: 10.16085/j.issn.1000-6613.2022-0654
• Materials science and technology • Previous Articles Next Articles
HAO Xubo(), NIU Baolian(), GUO Haotian, XU Xianghe, ZHANG Zhongbin, LI Yinglin
Received:
2022-04-14
Revised:
2022-06-13
Online:
2023-03-13
Published:
2023-02-25
Contact:
NIU Baolian
郝旭波(), 牛宝联(), 郭昊天, 徐祥和, 张忠斌, 李应林
通讯作者:
牛宝联
作者简介:
郝旭波(1996—),男,硕士研究生,研究方向为相变微胶囊与太阳能利用。E-mail:aiboshen@163.com。
CLC Number:
HAO Xubo, NIU Baolian, GUO Haotian, XU Xianghe, ZHANG Zhongbin, LI Yinglin. Modification of microencapsulated phase change material and its utilization in photothermal conversion[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 854-871.
郝旭波, 牛宝联, 郭昊天, 徐祥和, 张忠斌, 李应林. 相变微胶囊改性及其在光热转换中的应用[J]. 化工进展, 2023, 42(2): 854-871.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0654
芯材 | 壳材 | 制备方法 | 性能提升 | 参考文献 |
---|---|---|---|---|
正十八烷 | 甲基丙烯酸甲酯、丙烯酸和丙烯酸丁酯共聚 | 原位聚合法 | 储热放热性能提升:在加热/冷却过程中,相变微胶囊测量焓相对于理论焓分别上升了58.7%和63.9% | [ |
石蜡 | 丙烯酸丁酯、甲基丙烯酸丁酯、甲基丙烯酸月桂酯和甲基丙烯酸硬脂酯为单体与甲基丙烯酸甲酯共聚 | 悬浮聚合法 | 热稳定性提升:非交联聚合物壳的第1次降解开始于158℃,交联聚合物壳提升至238℃ | [ |
石蜡 | 明胶-海藻酸钠 | 复合凝聚法 | 热稳定性提升:当工作温度为60.4℃,微胶囊的质量损失率仅为0.97%左右 | [ |
石蜡和正十八烷 | 纤维素纳米晶-三聚氰胺甲醛树脂 | Pickering乳液聚合法 | 热稳定性提升:加热/冷却循环200次后,相变焓保持率可达99.7% | [ |
石蜡 | 聚甲基丙烯酸甲酯-甲基丙烯酸甲酯 | 悬浮聚合法 | 热稳定性提升:在162.3~204.4℃,微胶囊的初始分解温度相比于石蜡提高了33.3℃ | [ |
芯材 | 壳材 | 制备方法 | 性能提升 | 参考文献 |
---|---|---|---|---|
正十八烷 | 甲基丙烯酸甲酯、丙烯酸和丙烯酸丁酯共聚 | 原位聚合法 | 储热放热性能提升:在加热/冷却过程中,相变微胶囊测量焓相对于理论焓分别上升了58.7%和63.9% | [ |
石蜡 | 丙烯酸丁酯、甲基丙烯酸丁酯、甲基丙烯酸月桂酯和甲基丙烯酸硬脂酯为单体与甲基丙烯酸甲酯共聚 | 悬浮聚合法 | 热稳定性提升:非交联聚合物壳的第1次降解开始于158℃,交联聚合物壳提升至238℃ | [ |
石蜡 | 明胶-海藻酸钠 | 复合凝聚法 | 热稳定性提升:当工作温度为60.4℃,微胶囊的质量损失率仅为0.97%左右 | [ |
石蜡和正十八烷 | 纤维素纳米晶-三聚氰胺甲醛树脂 | Pickering乳液聚合法 | 热稳定性提升:加热/冷却循环200次后,相变焓保持率可达99.7% | [ |
石蜡 | 聚甲基丙烯酸甲酯-甲基丙烯酸甲酯 | 悬浮聚合法 | 热稳定性提升:在162.3~204.4℃,微胶囊的初始分解温度相比于石蜡提高了33.3℃ | [ |
芯材 | 壳材 | 制备方法 | 性能提升 | 功能化 | 参考文献 |
---|---|---|---|---|---|
石蜡 | SiO2-TiO2 | 溶胶-凝胶法 | 导热能力提升:微胶囊的热导率比石蜡高11.63% | — | [ |
正二十烷 | SiO2-Cu | 界面聚合法 | 导热能力提升:壳中掺杂铜纳米颗粒前后,微胶囊的热导率提升了83.3% | — | [ |
太阳盐 | SiO2-GO | 溶胶-凝胶法 | 导热能力提升:微胶囊的热导率比纯硝酸盐提高约45% | 光热转换 | [ |
石蜡 | TiO2-GO | 原位水解缩聚法 | 热稳定性提升:微胶囊的初始分解温度相比石蜡提高7℃ | 光热转换 | [ |
正二十烷 | TiO2-ZnO | 乳液模板界面缩聚法 | 热响应能力提升:能够对外界温度产生实时热响应 | 光催化和抗菌 | [ |
芯材 | 壳材 | 制备方法 | 性能提升 | 功能化 | 参考文献 |
---|---|---|---|---|---|
石蜡 | SiO2-TiO2 | 溶胶-凝胶法 | 导热能力提升:微胶囊的热导率比石蜡高11.63% | — | [ |
正二十烷 | SiO2-Cu | 界面聚合法 | 导热能力提升:壳中掺杂铜纳米颗粒前后,微胶囊的热导率提升了83.3% | — | [ |
太阳盐 | SiO2-GO | 溶胶-凝胶法 | 导热能力提升:微胶囊的热导率比纯硝酸盐提高约45% | 光热转换 | [ |
石蜡 | TiO2-GO | 原位水解缩聚法 | 热稳定性提升:微胶囊的初始分解温度相比石蜡提高7℃ | 光热转换 | [ |
正二十烷 | TiO2-ZnO | 乳液模板界面缩聚法 | 热响应能力提升:能够对外界温度产生实时热响应 | 光催化和抗菌 | [ |
微胶囊样品编号 | 纳米Al2O3质量分数/% | 熔化温度/℃ | 熔化焓/J·g-1 | 结晶温度/℃ | 结晶焓/J·g-1 | 包封率/% | 包封效率/% | 热导率/W·m-1·K-1 |
---|---|---|---|---|---|---|---|---|
a | 0 | 22.47 | 110.40 | 22.54 | 110.00 | 63.59 | 64.29 | 0.2442 |
b | 5 | 23.43 | 105.50 | 23.19 | 104.30 | 60.77 | 61.20 | 0.2786 |
c | 16 | 23.75 | 93.41 | 23.32 | 92.43 | 53.81 | 54.21 | 0.3104 |
d | 27 | 23.14 | 84.54 | 22.76 | 83.99 | 48.70 | 49.16 | 0.3409 |
e | 33 | 23.49 | 76.25 | 22.03 | 75.47 | 43.92 | 44.26 | 0.3591 |
f | 38 | 22.96 | 75.40 | 22.58 | 75.13 | 43.43 | 43.91 | 0.3816 |
g | 石蜡 | 27.72 | 173.60 | 24.73 | 169.20 | — | — | — |
h | PMMA | — | — | — | — | — | — | 0.2111 |
微胶囊样品编号 | 纳米Al2O3质量分数/% | 熔化温度/℃ | 熔化焓/J·g-1 | 结晶温度/℃ | 结晶焓/J·g-1 | 包封率/% | 包封效率/% | 热导率/W·m-1·K-1 |
---|---|---|---|---|---|---|---|---|
a | 0 | 22.47 | 110.40 | 22.54 | 110.00 | 63.59 | 64.29 | 0.2442 |
b | 5 | 23.43 | 105.50 | 23.19 | 104.30 | 60.77 | 61.20 | 0.2786 |
c | 16 | 23.75 | 93.41 | 23.32 | 92.43 | 53.81 | 54.21 | 0.3104 |
d | 27 | 23.14 | 84.54 | 22.76 | 83.99 | 48.70 | 49.16 | 0.3409 |
e | 33 | 23.49 | 76.25 | 22.03 | 75.47 | 43.92 | 44.26 | 0.3591 |
f | 38 | 22.96 | 75.40 | 22.58 | 75.13 | 43.43 | 43.91 | 0.3816 |
g | 石蜡 | 27.72 | 173.60 | 24.73 | 169.20 | — | — | — |
h | PMMA | — | — | — | — | — | — | 0.2111 |
1 | 卜令帅, 屈治国, 徐洪涛, 等. 相变微胶囊悬浮液储能系统放冷特性实验研究[J]. 化工学报, 2021, 72(8): 4064-4072. |
BU Lingshuai, QU Zhiguo, XU Hongtao, et al. Experimental study of cooling discharging characteristics of the energy storage system filled with MPCM slurry[J]. CIESC Journal, 2021, 72(8): 4064-4072. | |
2 | 高剑晨, 赵炳晨, 何峰, 等. 六水硝酸镁相变储热复合材料改性制备及储/放热性能研究[J]. 化工学报, 2021, 72(6): 3328-3337. |
GAO Jianchen, ZHAO Bingchen, HE Feng, et al. Preparation and investigation of the thermal charging and discharging of modified magnesium nitrate hexahydrate composite phase change material[J]. CIESC Journal, 2021, 72(6): 3328-3337. | |
3 | SUN Zhao, SUN Kun, ZHANG Huanzhi, et al. Development of poly(ethylene glycol)/silica phase-change microcapsules with well-defined core-shell structure for reliable and durable heat energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 225: 111069. |
4 | LI Min, CHEN Meirong, WU Zhishen. Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube[J]. Applied Energy, 2014, 127: 166-171. |
5 | MENG Xiao, QIN Siyin, FAN Hongbo, et al. Long alkyl chain-grafted carbon nanotube-decorated binary-core phase-change microcapsules for heat energy storage: Synthesis and thermal properties[J]. Solar Energy Materials and Solar Cells, 2020, 212: 110589. |
6 | 高迪, 王树刚, 才晓旭, 等. 相变微胶囊的制备及其在微通道的应用进展[J]. 化工进展, 2021, 40(9): 5180-5194. |
GAO Di, WANG Shugang, CAI Xiaoxu, et al. Preparation of microencapsulated phase change material and its application in microchannels: A review[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5180-5194. | |
7 | 李芙蓉, 孙志成, 张青青, 等. 相变微胶囊在节能环保中的应用研究进展[J]. 环境化学, 2020, 39(3): 762-773. |
LI Furong, SUN Zhicheng, ZHANG Qingqing, et al. Application of phase-change microcapsules in energy saving and environmental protection[J]. Environmental Chemistry, 2020, 39(3): 762-773. | |
8 | YUAN Yanping, ZHANG Nan, TAO Wenquan, et al. Fatty acids as phase change materials: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 482-498. |
9 | Trung Dung DAO, JEONG Han Mo. A Pickering emulsion route to a stearic acid/graphene core-shell composite phase change material[J]. Carbon, 2016, 99: 49-57. |
10 | ZHAO C Y, ZHANG G H. Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3813-3832. |
11 | ZHANG Baolian, LI Shanshan, FEI Xuening, et al. Enhanced mechanical properties and thermal conductivity of paraffin microcapsules shelled by hydrophobic-silicon carbide modified melamine-formaldehyde resin[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603:125219. |
12 | SÁNCHEZ-SILVA L, LOPEZ V, CUENCA N, et al. Poly(urea-formaldehyde) microcapsules containing commercial paraffin: In situ polymerization study[J]. Colloid and Polymer Science, 2018, 296(9): 1449-1457. |
13 | ZHAN Shiping, CHEN Shuhua, CHEN Li, et al. Preparation and characterization of polyurea microencapsulated phase change material by interfacial polycondensation method[J]. Powder Technology, 2016, 292: 217-222. |
14 | SÁNCHEZ-SILVA L, RODRÍGUEZ J F, CARMONA M, et al. Thermal and morphological stability of polystyrene microcapsules containing phase-change materials[J]. Journal of Applied Polymer Science, 2011, 120(1): 291-297. |
15 | YANG Ying, YU Hui, LI Hua, et al. Effect of high temperature on immune response of grass carp (Ctenopharyngodon idellus) by transcriptome analysis[J]. Fish & Shellfish Immunology, 2016, 58: 89-95. |
16 | ZHU Yalin, QIN Yaosong, WEI Chengsha, et al. Nanoencapsulated phase change materials with polymer-SiO2 hybrid shell materials: compositions, morphologies, and properties[J]. Energy Conversion and Management, 2018, 164: 83-92. |
17 | JI Wei, CHENG Xiaomin, CHEN Sihong, et al. Self-assembly fabrication of GO/TiO2@paraffin microcapsules for enhancement of thermal energy storage[J]. Powder Technology, 2021, 385: 546-556. |
18 | SHENG Nan, ZHU Chunyu, SAKAI H, et al. Synthesis of Al-25% Si@Al2O3@Cu microcapsules as phase change materials for high temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 191: 141-147. |
19 | JIANG Zhuoni, YANG Wenbin, HE Fangfang, et al. Modified phase change microcapsules with calcium carbonate and graphene oxide shells for enhanced energy storage and leakage prevention[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5182-5191. |
20 | CHEN Zhonghua, WANG Jianchuan, YU Fei, et al. Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage[J]. Journal of Materials Chemistry A, 2015, 3(21): 11624-11630. |
21 | WANG Yunming, TANG Bingtao, ZHANG Shufen. Single-walled carbon nanotube/phase change material composites: Sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage[J]. Advanced Functional Materials, 2013, 23(35): 4354-4360. |
22 | 公雪, 王程遥, 朱群志. 微胶囊相变材料制备与应用研究进展[J]. 化工进展, 2021, 40(10): 5554-5576. |
GONG Xue, WANG Chengyao, ZHU Qunzhi. Research progress on preparation and application of microcapsule phase change materials[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5554-5576. | |
23 | GUO Xi, CAO Jinzhen, PENG Yao, et al. Incorporation of microencapsulated dodecanol into wood flour/high-density polyethylene composite as a phase change material for thermal energy storage[J]. Materials & Design, 2016, 89: 1325-1334. |
24 | CAO Lei, TANG Fang, FANG Guiyin. Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials[J]. Solar Energy Materials and Solar Cells, 2014, 123: 183-188. |
25 | CHEN Dazhu, QIN Siyin, TSUI G C P, et al. Fabrication, morphology and thermal properties of octadecylamine-grafted graphene oxide-modified phase-change microcapsules for thermal energy storage[J]. Composites Part B: Engineering, 2019, 157: 239-247. |
26 | LIU Huan, HAN Zhaoteng, WANG Qianwei, et al. Surface construction of Ni(OH)2 nanoflowers on phase-change microcapsules for enhancement of heat transfer and thermal response[J]. Applied Surface Science, 2021, 562: 150211. |
27 | ZHANG Li, YANG Wenbin, JIANG Zhuoni, et al. Graphene oxide-modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage-prevention performance[J]. Applied Energy, 2017, 197: 354-363. |
28 | WANG Tingyu, TONG Junjie, LI Xinxi, et al. Research on morphological control and temperature regulation of phase change microcapsules with binary cores for electronics thermal management[J]. Thermochimica Acta, 2021, 706: 179079. |
29 | 张寅平, 苏跃红, 葛新石. (准)共晶系相变材料融点及融解热的理论预测[J]. 中国科学技术大学学报, 1995, 25(4): 474-478. |
ZHANG Yinping, SU Yuehong, GE Xinshi. Prediction of the melting temperature and the fusion heat of (quasi-) eutectic PCM[J]. Journal of China University of Science and Technology, 1995, 25(4): 474-478. | |
30 | ZHAO Yinxu, ZHANG Xuelai, HUA Weisan. Review of preparation technologies of organic composite phase change materials in energy storage[J]. Journal of Molecular Liquids, 2021, 336: 115923. |
31 | HE Hongtao, YUE Qinyan, GAO Baoyu, et al. The effects of compounding conditions on the properties of fatty acids eutectic mixtures as phase change materials[J]. Energy Conversion and Management, 2013, 69: 116-121. |
32 | HUANG Ming, LUO Yan, ZHONG Yi, et al. Preparation and characterization of microencapsulated phase change materials with binary cores and poly (allyl methacrylate) (PALMA) shells used for thermo-regulated fibers[J]. Thermochimica Acta, 2017, 655: 262-268. |
33 | SU Weiguang, DARKWA J, KOKOGIANNAKIS G. Review of solid-liquid phase change materials and their encapsulation technologies[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 373-391. |
34 | MA Yanhong, CHU Xiaodong, TANG Guoyi, et al. Adjusting phase change temperature of microcapsules by regulating their core compositions[J]. Materials Letters, 2012, 82: 39-41. |
35 | WANG Tingyu, WANG Shuangfeng, LUO Ruilian, et al. Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage[J]. Applied Energy, 2016, 171: 113-119. |
36 | PAUL J, KADIRGAMA K, SAMYKANO M, et al. A comprehensive review on thermophysical properties and solar thermal applications of organic nano composite phase change materials[J]. Journal of Energy Storage, 2022, 45: 103415. |
37 | WEI Kun, MA Biao, WANG Hainian, et al. Synthesis and thermal properties of novel microencapsulated phase-change materials with binary cores and epoxy polymer shells[J]. Polymer Bulletin, 2017, 74(2): 359-367. |
38 | Jeong Yeon DO, Namgyu SON, SHIN Jongmin, et al. n-Eicosane-Fe3O4@SiO2@Cu microcapsule phase change material and its improved thermal conductivity and heat transfer performance[J]. Materials & Design, 2021, 198: 109357. |
39 | GAO Guorui, ZHANG Tongxing, JIAO Shaokai, et al. Preparation of reduced graphene oxide modified magnetic phase change microcapsules and their application in direct absorption solar collector[J]. Solar Energy Materials and Solar Cells, 2020, 216: 110695. |
40 | 喻学锋, 黄浩, 康翼鸿. 一种光热转换相变储能微胶囊的制备方法: CN110270283A[P]. 2019-09-24. |
YU Xuefeng, HUANG Hao, KANG Yihong. A kind of preparation method of photothermal conversion phase change energy storage microcapsules: CN110270283A[P]. 2019-09-24. | |
41 | 杨睿, 叶璐, 吕阳成, 等. 一种双层核壳结构相变微胶囊的制备方法: CN113976053A[P]. 2022-01-28. |
YANG Rui, YE Lu, Yangcheng LYU, et al. Preparation method of phase change microcapsules with double-layer core-shell structure: CN113976053A[P]. 2022-01-28. | |
42 | 李景景. 正二十二烷/二氧化硅/聚吡咯/MOFs多层级相变微胶囊的构建及其在生物传感器的应用[D]. 北京: 北京化工大学, 2021. |
LI Jingjing. Construction of n-docosane/silica/polypyrrole/MOFs multilayer phase change microcapsules and its application in biosensors[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
43 | KAWAGUCHI T, SAKAI H, SHENG Nan, et al. Microencapsulation of Zn-Al alloy as a new phase change material for middle-high-temperature thermal energy storage applications[J]. Applied Energy, 2020, 276: 115487. |
44 | AL-SHANNAQ R, KURDI J, AL-MUHTASEB S, et al. Innovative method of metal coating of microcapsules containing phase change materials[J]. Solar Energy, 2016, 129: 54-64. |
45 | MA Qun, ZOU Deqiu, WANG Yinshuang, et al. Preparation and properties of novel ceramic composites based on microencapsulated phase change materials (MEPCMs) with high thermal stability[J]. Ceramics International, 2021, 47(17): 24240-24251. |
46 | SUN Zhao, HAN Zhaoteng, LIU Huan, et al. Nanoflaky nickel-hydroxide-decorated phase-change microcapsules as smart electrode materials with thermal self-regulation function for supercapacitor application[J]. Renewable Energy, 2021, 174: 557-572. |
47 | 康翼鸿, 喻学锋, 何睿, 等. 一种双层壁材包覆的具有光致变色功能的相变微胶囊及其制备方法: CN114307889A[P]. 2022-04-12. |
KANG Yihong, YU Xuefeng, HE Rui, et al. Phase change microcapsule coated with double-layer wall materials and having photochromic function and preparation method of phase change microcapsule: CN114307889A[P]. 2022-04-12. | |
48 | 葛学武, 蒋卓妮, 汪谟贞. 一种有机-无机双层复合壁材磁性相变微胶囊的制备方法: CN112473581A[P]. 2022-01-11. |
GE Xuewu, JIANG Zhuoni, WANG Mozhen. Preparation method of organic-inorganic double-layer composite wall material magnetic phase change microcapsule: CN112473581A[P]. 2022-01-11. | |
49 | 江羽, 王倩, 王冬, 等. 高温相变储能微胶囊研究进展[J]. 工程科学学报, 2021, 43(1): 108-118. |
JIANG Yu, WANG Qian, WANG Dong, et al. Research progress of high-temperature phase change energy storage microcapsules[J]. Chinese Journal of Engineering, 2021, 43(1): 108-118. | |
50 | HAN Cangjuan, GU Huazhi, ZHANG Meijie, et al. Al-Si@Al2O3@ mullite microcapsules for thermal energy storage: Preparation and thermal properties[J]. Solar Energy Materials and Solar Cells, 2020, 217: 110697. |
51 | NOMURA T, SHENG Nan, ZHU Chunyu, et al. Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation[J]. Applied Energy, 2017, 188: 9-18. |
52 | LIU Jin, LI Junfeng, LUO Zhengping, et al. A novel multiwalled LiF@GO@SiO2 microcapsule with high phase change temperature[J]. Solar Energy Materials and Solar Cells, 2019, 203: 110188. |
53 | VAROL T, GÜLER O, AKÇAY S B, et al. Enhancement of electrical and thermal conductivity of low-cost novel Cu-Ag alloys prepared by hot-pressing and electroless plating from recycled electrolytic copper powders[J]. Materials Chemistry and Physics, 2022, 281: 125892. |
54 | YU Qinghua, TCHUENBOU-MAGAIA F, AL-DURI B, et al. Thermo-mechanical analysis of microcapsules containing phase change materials for cold storage[J]. Applied Energy, 2018, 211: 1190-1202. |
55 | XU Qian, LIU Huan, WANG Xiaodong, et al. Smart design and construction of nanoflake-like MnO2/SiO2 hierarchical microcapsules containing phase change material for in situ thermal management of supercapacitors[J]. Energy Conversion and Management, 2018, 164: 311-328. |
56 | SUN Zhao, LIU Huan, WANG Xiaodong. Thermal self-regulatory intelligent biosensor based on carbon-nanotubes-decorated phase-change microcapsules for enhancement of glucose detection[J]. Biosensors and Bioelectronics, 2022, 195: 113586. |
57 | YIN Dezhong, MA Li, LIU Jinjie, et al. Pickering emulsion: A novel template for microencapsulated phase change materials with polymer-silica hybrid shell[J]. Energy, 2014, 64: 575-581. |
58 | WANG Hao, ZHAO Liang, CHEN Lijie, et al. Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage[J]. Journal of Physics and Chemistry of Solids, 2017, 111: 207-213. |
59 | SONG Qingwen, LI Yi, XING Jianwei, et al. Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles[J]. Polymer, 2007, 48(11): 3317-3323. |
60 | LI Jindui, LIU Huan, WANG Xiaodong, et al. Development of thermoregulatory enzyme carriers based on microencapsulated n-docosane phase change material for biocatalytic enhancement of amylases[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8396-8406. |
61 | SHI Jiafu, JIANG Yanjun, WANG Xiaoli, et al. Design and synthesis of organic-inorganic hybrid capsules for biotechnological applications[J]. Chemical Society Reviews, 2014, 43(15): 5192-5210. |
62 | CARUSO F, CARUSO R A, MOHWALD H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science, 1998, 282(5391): 1111-1114. |
63 | DONATH E, SUKHORUKOV G B, CARUSO F, et al. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes[J]. Angewandte Chemie International Edition, 1998, 37(16): 2201-2205. |
64 | 李爽. 有机/无机杂化自润滑微胶囊的制备与摩擦学性能研究[D]. 大庆: 东北石油大学, 2018. |
LI Shuang. Fabrication and tribological properties of organic-inorganic self-lubricating microcapsules[D]. Daqing: Northeast Petroleum University, 2018. | |
65 | 李端, 张长瑞, 李斌, 等. 尿素法制备氮化物陶瓷材料的研究进展[J]. 宇航材料工艺, 2011, 41(5): 1-5. |
LI Duan, ZHANG Changrui, LI Bin, et al. Nitride ceramic materials prepared by urea-route[J]. Aerospace Materials & Technology, 2011, 41(5): 1-5. | |
66 | 薛跃军, 梁西瑶, 高晓菊, 等. 自蔓燃方法制备氮化物陶瓷粉体研究进展[J]. 硅酸盐通报, 2010, 29(6): 1373-1379. |
XUE Yuejun, LIANG Xiyao, GAO Xiaoju, et al. Development of nitrides powders by SHS method[J]. Bulletin of the Chinese Ceramic Society, 2010, 29(6): 1373-1379. | |
67 | WANG Xingang, ZHANG Chenyang, WANG Kai, et al. Highly efficient photothermal conversion capric acid phase change microcapsule: Silicon carbide modified melamine urea formaldehyde[J]. Journal of Colloid and Interface Science, 2021, 582: 30-40. |
68 | WANG Hao, ZHAO Liang, SONG Guolin, et al. Organic-inorganic hybrid shell microencapsulated phase change materials prepared from SiO2/TiC-stabilized Pickering emulsion polymerization[J]. Solar Energy Materials and Solar Cells, 2018, 175: 102-110. |
69 | SUN Zhu, YAN Xiaoxiao, XIAO Yao, et al. Pickering emulsions stabilized by colloidal surfactants: Role of solid particles[J]. Particuology, 2022, 64: 153-163. |
70 | CHEN Kang, LI Ping, LI Xingong, et al. Effect of silane coupling agent on compatibility interface and properties of wheat straw/polylactic acid composites[J]. International Journal of Biological Macromolecules, 2021, 182: 2108-2116. |
71 | 陈波, 韦中华, 李镔, 等. 氮化硅陶瓷在四大领域的研究及应用进展[J]. 硅酸盐通报, 2022, 41(4): 1404-1415. |
CHEN Bo, WEI Zhonghua, LI Bin, et al. Research and application progress of silicon nitride ceramics in four major fields[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1404-1415. | |
72 | 姜文政, 林瑛, 江平开, 等. 三维氮化硼结构及其导热绝缘聚合物纳米复合材料[J]. 电气工程学报, 2021, 16(2): 12-24. |
JIANG Wenzheng, LIN Ying, JIANG Pingkai, et al. Three-dimensional structured boron nitride and its thermally conductive and electrically insulating composites[J]. Journal of Electrical Engineering, 2021, 16(2): 12-24. | |
73 | HIROSAKI N, OGATA S, KOCER C, et al. Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β-Si3N4 [J]. Physical Review B, 2002, 65(13): 134110. |
74 | YANG Yanyang, KUANG Jie, WANG Hao, et al. Enhancement in thermal property of phase change microcapsules with modified silicon nitride for solar energy[J]. Solar Energy Materials and Solar Cells, 2016, 151: 89-95. |
75 | SUN Na, XIAO Zhenggang. Synthesis and performances of phase change materials microcapsules with a polymer/BN/TiO2 hybrid shell for thermal energy storage[J]. Energy & Fuels, 2017, 31(9): 10186-10195. |
76 | YANG Yanyang, YE Xiaoxin, LUO Jie, et al. Polymethyl methacrylate based phase change microencapsulation for solar energy storage with silicon nitride[J]. Solar Energy, 2015, 115: 289-296. |
77 | LI Chao’en, YU Hang, SONG Yuan, et al. Preparation and characterization of PMMA/TiO2 hybrid shell microencapsulated PCMs for thermal energy storage[J]. Energy, 2019, 167: 1031-1039. |
78 | XUAN Yimin, HUANG Yong, LI Qiang. Experimental investigation on thermal conductivity and specific heat capacity of magnetic microencapsulated phase change material suspension[J]. Chemical Physics Letters, 2009, 479(4/5/6): 264-269. |
79 | LATIL S, HENRARD L. Charge carriers in few-layer graphene films[J]. Physical Review Letters, 2006, 97(3): 036803. |
80 | SU Junfeng, WANG Xinyu, HAN Shan, et al. Preparation and physicochemical properties of microcapsules containing phase-change material with graphene/organic hybrid structure shells[J]. Journal of Materials Chemistry A, 2017, 5(45): 23937-23951. |
81 | CHENG Jiaji, ZHOU Yue, MA Dan, et al. Preparation and characterization of carbon nanotube microcapsule phase change materials for improving thermal comfort level of buildings[J]. Construction and Building Materials, 2020, 244: 118388. |
82 | WAN Xian, ZHANG Hongyu, CHEN Cong, et al. Synthesis and characterization of phase change materials microcapsules with paraffin core/cross-linked hybrid polymer shell for thermal energy storage[J]. Journal of Energy Storage, 2020, 32: 101897. |
83 | QIU Xiaolin, LI Wei, SONG Guolin, et al. Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage[J]. Energy, 2012, 46(1): 188-199. |
84 | TIAN Yuti, LIU Yong, ZHANG Li, et al. Preparation and characterization of gelatin-sodium alginate/paraffin phase change microcapsules[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586: 124216. |
85 | ZHANG Zhe, ZHANG Zhen, CHANG Tian, et al. Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in situ polymerization[J]. Chemical Engineering Journal, 2022, 428: 131164. |
86 | MA Xiaochun, LIU Yanjun, LIU Han, et al. Fabrication of novel slurry containing graphene oxide-modified microencapsulated phase change material for direct absorption solar collector[J]. Solar Energy Materials and Solar Cells, 2018, 188: 73-80. |
87 | LIU Huan, WANG Xiaodong, WU Dezhen, et al. Fabrication and applications of dual-responsive microencapsulated phase change material with enhanced solar energy-storage and solar photocatalytic effectiveness[J]. Solar Energy Materials and Solar Cells, 2019, 193: 184-197. |
88 | KE Weidong, WU Xiuwen, ZHANG Jinlin. In situ polymerization of organic and inorganic phase change microcapsule and enhancement of infrared stealth via nano iron[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: 127124. |
89 | SU Weiguang, DARKWA J, KOKOGIANNAKIS G, et al. Preparation of microencapsulated phase change materials (MEPCM) for thermal energy storage[J]. Energy Procedia, 2017, 121: 95-101. |
90 | LI Min, LIU Jianpeng, SHI Junbing. Synthesis and properties of phase change microcapsule with SiO2-TiO2 hybrid shell[J]. Solar Energy, 2018, 167: 158-164. |
91 | JI Wei, CHENG Xiaomin, CHEN Haixue, et al. Efficient synthesis of regular spherical GO/SiO2@Solar Salt microcapsules to enhance heat-storage capacity and cycle stability[J]. Energy Conversion and Management, 2021, 245: 114637. |
92 | JIANG Xiang, LUO Ruilian, PENG Feifei, et al. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3 [J]. Applied Energy, 2015, 137: 731-737. |
93 | ZOU Deqiu, LIU Xiaoshi, HE Ruijun, et al. High thermal response rate and super low supercooling degree microencapsulated phase change materials (MEPCM) developed by optimizing shell with various nanoparticles[J]. International Journal of Heat and Mass Transfer, 2019, 140: 956-964. |
94 | LI Xiang, WANG Caiyun, WANG Yanbin, et al. Flexible and resilient photothermal polyurethane film from polydopamine-coated phase change microcapsules[J]. Solar Energy Materials and Solar Cells, 2021, 227: 111111. |
95 | PORNEA A M, KIM H. Design and synthesis of SiO2/TiO2/PDA functionalized phase change microcapsules for efficient solar-driven energy storage[J]. Energy Conversion and Management, 2021, 232: 113801. |
96 | GUNEY M S, TEPE Y. Classification and assessment of energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 1187-1197. |
97 | ZHANG Yuang, WANG Jiasheng, QIU Jinjing, et al. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity[J]. Applied Energy, 2019, 237: 83-90. |
98 | TANG Zhaodi, GAO Hongyi, CHEN Xiao, et al. Advanced multifunctional composite phase change materials based on photo-responsive materials[J]. Nano Energy, 2021, 80: 105454. |
99 | GAO Minmin, ZHU Liangliang, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science, 2019, 12(3): 841-864. |
100 | MAITHYA O M, ZHU Xiangyu, LI Xiang, et al. High-energy storage graphene oxide modified phase change microcapsules from regenerated chitin Pickering Emulsion for photothermal conversion[J]. Solar Energy Materials and Solar Cells, 2021, 222: 110924. |
101 | WU Haiyan, CHEN Ruotian, SHAO Yaowen, et al. Novel flexible phase change materials with mussel-inspired modification of melamine foam for simultaneous light-actuated shape memory and light-to-thermal energy storage capability[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 13532-13542. |
102 | LIU Huan, TIAN Xinxin, OUYANG Mize, et al. Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy[J]. Renewable Energy, 2021, 179: 47-64. |
103 | JAIN P K, HUANG Xiaohua, EL-SAYED I H, et al. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Accounts of Chemical Research, 2008, 41(12): 1578-1586. |
104 | FAN Xiaoyue, QIU Xiaolin, LU Lixin, et al. Full-spectrum light-driven phase change microcapsules modified by CuS-GO nanoconverter for enhancing solar energy conversion and storage capability[J]. Solar Energy Materials and Solar Cells, 2021, 223: 110937. |
105 | JAMIL F, ALI H M, JANJUA M M. MXene based advanced materials for thermal energy storage: A recent review[J]. Journal of Energy Storage, 2021, 35: 102322. |
106 | PANG Yunsong, ZHANG Jiajia, MA Ruimin, et al. Solar-thermal water evaporation: A review[J]. ACS Energy Letters, 2020, 5(2): 437-456. |
107 | SUN Zhao, SHI Tao, WANG Yatao, et al. Hierarchical microencapsulation of phase change material with carbon-nanotubes/polydopamine/silica shell for synergistic enhancement of solar photothermal conversion and storage[J]. Solar Energy Materials and Solar Cells, 2022, 236: 111539. |
108 | YUAN Shunpan, YAN Rui, REN Bibo, et al. Robust, double-layered phase-changing microcapsules with superior solar-thermal conversion capability and extremely high energy storage density for efficient solar energy storage[J]. Renewable Energy, 2021, 180: 725-733. |
109 | HU Lecheng, LI Xiang, DING Lei, et al. Flexible textiles with polypyrrole deposited phase change microcapsules for efficient photothermal energy conversion and storage[J]. Solar Energy Materials and Solar Cells, 2021, 224: 110985. |
110 | 王先锋, 杜博超, 赵涛, 等. 一种具有全波段光热转换功能的相变微胶囊及其制备方法: CN112251197A[P]. 2021-01-22. |
Wang Xianfeng, Du Bochao, Zhao Tao, et al. Phase-change micro-capsule with full-wave-band photo-thermal conversion function and preparation method thereof: CN112251197A[P]. 2021-01-22. | |
111 | 吴京, 王先锋, 薛东, 等. 基于聚多巴胺包覆的光热相变微胶囊的制备及性能[J]. 精细化工, 2021, 38(3): 489-495. |
WU Jing, WANG Xianfeng, XUE Dong, et al. Preparation and properties of PDA-coated photothermal phase change microcapsules[J]. Fine Chemicals, 2021, 38(3): 489-495. | |
112 | ZHA Zhengbao, YUE Xiuli, REN Qiushi, et al. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells[J]. Advanced Materials, 2013, 25(5): 777-782. |
113 | LI Chenwei, JIANG Degang, HUO Bingbing, et al. Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination[J]. Nano Energy, 2019, 60: 841-849. |
114 | WANG Zhe, YAN Yutao, SHEN Xiaoping, et al. A wood-polypyrrole composite as a photothermal conversion device for solar evaporation enhancement[J]. Journal of Materials Chemistry A, 2019, 7(36): 20706-20712. |
115 | ZHAO Qihang, HE Fangfang, ZHANG Quanping, et al. Microencapsulated phase change materials based on graphene Pickering emulsion for light-to-thermal energy conversion and management[J]. Solar Energy Materials and Solar Cells, 2019, 203: 110204. |
116 | ZHAO Qihang, YANG Wenbin, LI Yongsheng, et al. Multifunctional phase change microcapsules based on graphene oxide Pickering emulsion for photothermal energy conversion and superhydrophobicity[J]. International Journal of Energy Research, 2020, 44(6): 4464-4474. |
117 | XU Bin, ZHOU Jing, NI Zhongjin, et al. Synthesis of novel microencapsulated phase change materials with copper and copper oxide for solar energy storage and photo-thermal conversion[J]. Solar Energy Materials and Solar Cells, 2018, 179: 87-94. |
118 | GAO Fengxia, WANG Xiaodong, WU Dezhen. Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide[J]. Solar Energy Materials and Solar Cells, 2017, 168: 146-164. |
119 | FUZIL N S, OTHMAN N H, ALIAS N H, et al. A review on photothermal material and its usage in the development of photothermal membrane for sustainable clean water production[J]. Desalination, 2021, 517: 115259. |
120 | 王先锋, 杜博超, 靳晓松, 等. 一种同时具备吸光发热储热功能的光热复合材料及其制备方法: CN109609100A[P]. 2019-04-12. |
WANG Xianfeng, DU Bochao, JIN Xiaosong, et al. Photo-thermal composite with light absorption and heating and heat storage functions and preparation method thereof: CN109609100A[P]. 2019-04-12. | |
121 | WANG Xianfeng, LI Chunhong, ZHAO Tao. Fabrication and characterization of poly(melamine-formaldehyde)/silicon carbide hybrid microencapsulated phase change materials with enhanced thermal conductivity and light-heat performance[J]. Solar Energy Materials and Solar Cells, 2018, 183: 82-91. |
122 | 姜孝武, 赵兵兵, 胡涛, 等. 光热转化增强型微胶囊相变材料的制备方法: CN112090378A[P]. 2020-12-18. |
JIANG Xiaowu, ZHAO Bingbing, HU Tao, et al. Preparation method of photo-thermal conversion enhanced micro-capsule phase change material: CN112090378A[P]. 2020-12-18. |
[1] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[2] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[3] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[4] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[5] | ZHANG Dailing, DING Yumei, ZUO Xiahua, LI Haowei, YANG Weimin, YAN Hua, AN Ying. Photothermal characteristics of waste toner nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4791-4798. |
[6] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[7] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[8] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[9] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[10] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[11] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[12] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[13] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
[14] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
[15] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |