Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (11): 5786-5800.DOI: 10.16085/j.issn.1000-6613.2022-2355
• Materials science and technology • Previous Articles
TIAN Xiaolu1(), YI Yikun1, HAI Feng1, WU Zhendi1, ZHENG Shentuo1, GUO Jingyu1, LI Mingtao1,2()
Received:
2022-12-26
Revised:
2023-03-17
Online:
2023-12-15
Published:
2023-11-20
Contact:
LI Mingtao
田晓录1(), 易义坤1, 海峰1, 吴振迪1, 郑申拓1, 郭靖宇1, 李明涛1,2()
通讯作者:
李明涛
作者简介:
田晓录(1993—),男,博士研究生,研究方向为锂离子电池电解质。E-mail:txl1993@stu.xjtu.edu.cn。
基金资助:
CLC Number:
TIAN Xiaolu, YI Yikun, HAI Feng, WU Zhendi, ZHENG Shentuo, GUO Jingyu, LI Mingtao. Research progress in shear-thickening electrolytes for lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5786-5800.
田晓录, 易义坤, 海峰, 吴振迪, 郑申拓, 郭靖宇, 李明涛. 剪切增稠流体在锂离子电池电解质方面的研究进展[J]. 化工进展, 2023, 42(11): 5786-5800.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2355
纳米材料类型 | 剪切增稠电解液组成 | 临界剪切 速率 | 电池性能 (商用电解液性能) | 冲击测试方法与 结果 | 参考文献 |
---|---|---|---|---|---|
气相SiO2(14nm) | 6.3% SiO2+1mol/L LiPF6+EC/DMC | 3.6s-1 | LiFePO4/graphite 110mAh/g-5C (102mAh/g-5C) | 冲击仪撞击扣式电池,0.639J | [ |
Stöber(数十纳米) | 30% stöber+1.2mol/L LiPF6 + EC/DMC | — | LiNi1/3Mn1/3Co1/3O2/graphite 130mAh/g-C/3 | 钢球撞击软包电池,5.65J | [ |
PMMA修饰SiO2(79nm) | 30% PMMA-SiO2+ 1.2mol/L LiPF6 + EC/DMC | — | LiNi1/3Mn1/3Co1/3O2/graphite 140 mAh/g-C/3 (141mAh/g-5C) | — | [ |
PMMA修饰SiO2(79nm) | 30% PMMA-SiO2 +1.2mol/L LiPF6 + EC/DMC | — | 有限单元模型模拟 | — | [ |
AR5 SiO2纳米棒(1760nm) | 33% AR5 SiO2 + 1mol/L LiTFSI + EC/EMC | 102s-1 | LiNi1/3Mn1/3Co1/3O2/graphite 102mAh/g-C/10 | 弹道冲击测试,装甲板卸力37% | [ |
APTES修饰GF(3~10µm) | 37.5% mGFs + 1mol/L LiPF6 + EC/DMC | 25s-1 | LiFePO4/Li 100mAh/g-C/2 (120mAh/g-5C) | 钢球撞击软包电池,2.04J | [ |
纳米材料类型 | 剪切增稠电解液组成 | 临界剪切 速率 | 电池性能 (商用电解液性能) | 冲击测试方法与 结果 | 参考文献 |
---|---|---|---|---|---|
气相SiO2(14nm) | 6.3% SiO2+1mol/L LiPF6+EC/DMC | 3.6s-1 | LiFePO4/graphite 110mAh/g-5C (102mAh/g-5C) | 冲击仪撞击扣式电池,0.639J | [ |
Stöber(数十纳米) | 30% stöber+1.2mol/L LiPF6 + EC/DMC | — | LiNi1/3Mn1/3Co1/3O2/graphite 130mAh/g-C/3 | 钢球撞击软包电池,5.65J | [ |
PMMA修饰SiO2(79nm) | 30% PMMA-SiO2+ 1.2mol/L LiPF6 + EC/DMC | — | LiNi1/3Mn1/3Co1/3O2/graphite 140 mAh/g-C/3 (141mAh/g-5C) | — | [ |
PMMA修饰SiO2(79nm) | 30% PMMA-SiO2 +1.2mol/L LiPF6 + EC/DMC | — | 有限单元模型模拟 | — | [ |
AR5 SiO2纳米棒(1760nm) | 33% AR5 SiO2 + 1mol/L LiTFSI + EC/EMC | 102s-1 | LiNi1/3Mn1/3Co1/3O2/graphite 102mAh/g-C/10 | 弹道冲击测试,装甲板卸力37% | [ |
APTES修饰GF(3~10µm) | 37.5% mGFs + 1mol/L LiPF6 + EC/DMC | 25s-1 | LiFePO4/Li 100mAh/g-C/2 (120mAh/g-5C) | 钢球撞击软包电池,2.04J | [ |
1 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
2 | SHU Kewei, WANG Caiyun, LI Weihua, et al. Electrolytes with reversible switch between liquid and solid phases[J]. Current Opinion in Electrochemistry, 2020, 21: 297-302. |
3 | THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7): 7854-7863. |
4 | NZEREOGU P U, OMAH A D, EZEMA F I, et al. Anode materials for lithium-ion batteries: A review[J]. Applied Surface Science Advances, 2022, 9: 100233. |
5 | YANG Xiaofei, ADAIR Keegan R, GAO Xuejie, et al. Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries[J]. Energy & Environmental Science, 2021, 14(2): 643-671. |
6 | KALHOFF J, ESHETU G G, BRESSER D, et al. Safer electrolytes for lithium-ion batteries: State of the art and perspectives[J]. ChemSusChem, 2015, 8(13): 2154-2175. |
7 | ARORA S, SHEN Weixiang, KAPOOR Ajay. Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1319-1331. |
8 | CHEN Yuqing, KANG Yuqiong, ZHAO Yun, et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards[J]. Journal of Energy Chemistry, 2021, 59: 83-99. |
9 | FAN Lizhen, HE Hongcai, Cewen NAN. Tailoring inorganic-polymer composites for the mass production of solid-state batteries[J]. Nature Reviews Materials, 2021, 6(11): 1003-1019. |
10 | ZHU Jiadeng, ZHANG Zhen, ZHAO Sheng, et al. Single-ion conducting polymer electrolytes for solid-state lithium-metal batteries: Design, performance, and challenges[J]. Advanced Energy Materials, 2021, 11(14): 2003836. |
11 | HU Enyuan, Seong-Min BAK, LIU Jue, et al. Oxygen-release-related thermal stability and decomposition pathways of Li x Ni0.5Mn1.5O4 cathode materials[J]. Chemistry of Materials, 2014, 26(2): 1108-1118. |
12 | FAN Xiulin, WANG Chunsheng. High-voltage liquid electrolytes for Li batteries: Progress and perspectives[J]. Chemical Society Reviews, 2021, 50(18): 10486-10566. |
13 | REN Dongsheng, FENG Xuning, LIU Lishuo, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. |
14 | BALAKRISHNAN P G, RAMESH R, PREM KUMAR T. Safety mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2006, 155(2): 401-414. |
15 | FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291. |
16 | LONG Lizhen, WANG Shuanjin, XIAO Min, et al. Polymer electrolytes for lithium polymer batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10038-10069. |
17 | MACFARLANE D R, FORSYTH M, HOWLETT P C, et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage[J]. Nature Reviews Materials, 2016, 1: 15005. |
18 | JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016, 1: 16141. |
19 | GAUTHIER M, CARNEY T J, ALEXIS G, et al. Electrode-electrolyte interface in Li-ion batteries: Current understanding and new insights[J]. The Journal of Physical Chemistry Letters, 2015, 6(22): 4653-4672. |
20 | TAKADA K. Progress and prospective of solid-state lithium batteries[J]. Acta Materialia, 2013, 61(3): 759-770. |
21 | LEE Y S, WAGNER N J. Rheological properties and small-angle neutron scattering of a shear thickening, nanoparticle dispersion at high shear rates[J]. Industrial & Engineering Chemistry Research, 2006, 45(21): 7015-7024. |
22 | WAGNER N J, BRADY J F. Shear thickening in colloidal dispersions[J]. Physics Today, 2009, 62(10): 27-32. |
23 | BROWN E, JAEGER H M. Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming[J]. Reports on Progress in Physics Physical Society, 2014, 77(4): 046602. |
24 | BARNES H A. Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids[J]. Journal of Rheology, 1989, 33(2): 329-366. |
25 | LEE Y S, WAGNER N J. Dynamic properties of shear thickening colloidal suspensions[J]. Rheologica Acta, 2003, 42(3): 199-208. |
26 | HOFFMAN R L. Explanations for the cause of shear thickening in concentrated colloidal suspensions[J]. Journal of Rheology, 1998, 42(1): 111-123. |
27 | BENDER J, WAGNER N J. Reversible shear thickening in monodisperse and bidisperse colloidal dispersions[J]. Journal of Rheology, 1996, 40(5): 899-916. |
28 | WEI Minghai, SUN Li, ZHANG Chunwei, et al. Shear-thickening performance of suspensions of mixed ceria and silica nanoparticles[J]. Journal of Materials Science, 2019, 54(1): 346-355. |
29 | LIN N Y C, GUY B M, HERMES M, et al. Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions[J]. Physical Review Letters, 2015, 115(22): 228304. |
30 | FISCHER C, BRAUN S A, P-E BOURBAN, et al. Dynamic properties of sandwich structures with integrated shear-thickening fluids[J]. Smart Materials and Structures, 2006, 15(5): 1467-1475. |
31 | ZHANG X Z, LI W H, GONG X L. The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper[J]. Smart Materials and Structures, 2008, 17(3): 035027. |
32 | PINTO F, MEO M. Design and manufacturing of a novel shear thickening fluid composite (STFC) with enhanced out-of-plane properties and damage suppression[J]. Applied Composite Materials, 2017, 24(3): 643-660. |
33 | GALINDO-ROSALES F J, MARTÍNEZ-ARANDA S, CAMPO-DEAÑO L. CorkSTFμfluidics—A novel concept for the development of eco-friendly light-weight energy absorbing composites[J]. Materials & Design, 2015, 82: 326-334. |
34 | KANG Tae Jin, KIM Chang Youn, HONG Kyung Hwa. Rheological behavior of concentrated silica suspension and its application to soft armor[J]. Journal of Applied Polymer Science, 2012, 124(2): 1534-1541. |
35 | MAJUMDAR A, BUTOLA B S, SRIVASTAVA Ankita. An analysis of deformation and energy absorption modes of shear thickening fluid treated Kevlar fabrics as soft body armour materials[J]. Materials & Design, 2013, 51: 148-153. |
36 | KATIYAR A, NANDI T, PRASAD N E. Impact behavior of aminosilane functionalized nanosilica based shear thickening fluid impregnated Kevlar fabrics[J]. Journal of Applied Polymer Science, 2021, 138(34): 50862. |
37 | LI X, CAO H L, GAO S, et al. Preparation of body armour material of Kevlar fabric treated with colloidal silica nanocomposite[J]. Plastics, Rubber and Composites, 2008, 37(5/6): 223-226. |
38 | QIN Jianbin, GUO Borui, ZHANG Le, et al. Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid[J]. Composites B: Engineering, 2020, 183: 107686. |
39 | LAUN H M, BUNG R, HESS S, et al. Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow[J]. Journal of Rheology, 1992, 36(4): 743-787. |
40 | FARR R S, MELROSE J R, BALL R C. Kinetic theory of jamming in hard-sphere startup flows[J]. Physical Review E, 1997, 55(6): 7203-7211. |
41 | PHUNG T N, BRADY J F, BOSSIS G. Stokesian dynamics simulation of Brownian suspensions[J]. Journal of Fluid Mechanics, 1996, 313: 181-207. |
42 | MARI R, SETO R, MORRIS J F, et al. Shear thickening, frictionless and frictional rheologies in non-brownian suspensions[J]. Journal of Rheology, 2014, 58(6): 1693-1724. |
43 | WYART M, CATES M E. Discontinuous shear thickening without inertia in dense non-brownian suspensions[J]. Physical Review Letters, 2014, 112(9): 098302. |
44 | JIANG Weifeng, XUAN Shouhu, GONG Xinglong. The role of shear in the transition from continuous shear thickening to discontinuous shear thickening[J]. Applied Physics Letters, 2015, 106(15): 151902. |
45 | BOSSIS G, GRASSELLI Y, MEUNIER A, et al. Tunable discontinuous shear thickening with magnetorheological suspensions[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(1): 5-11. |
46 | HE Qianyun, GONG Xinglong, XUAN Shouhu, et al. Shear thickening of suspensions of porous silica nanoparticles[J]. Journal of Materials Science, 2015, 50(18): 6041-6049. |
47 | NAKAMURA Hiroshi, MAKINO Soichiro, ISHII Masahiko. Continuous shear thickening and discontinuous shear thickening of concentrated monodispersed silica slurry[J]. Advanced Powder Technology, 2020, 31(4): 1659-1664. |
48 | GÜRGEN S, KUŞHAN M C, LI W. The effect of carbide particle additives on rheology of shear thickening fluids[J]. Korea-Australia Rheology Journal, 2016, 28(2): 121-128. |
49 | HASANZADEH M, MOTTAGHITALAB V, BABAEI H, et al. The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics[J]. Composites A: Applied Science and Manufacturing, 2016, 88: 263-271. |
50 | PETEL O E, OUELLET S, LOISEAU J, et al. A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction[J]. International Journal of Impact Engineering, 2015, 85: 83-96. |
51 | WETZEL E D, LEE Y S, EGRES R G, et al. The effect of rheological parameters on the ballistic properties of shear thickening fluid (STF)-kevlar composites[J]. AIP Conference Proceedings, 2004, 712(1): 288-293. |
52 | BOSSIS G, BRADY J F. The rheology of Brownian suspensions[J]. The Journal of Chemical Physics, 1989, 91(3): 1866-1874. |
53 | WU Yuxuan, CAO Saisai, XUAN Shouhu, et al. High performance zeolitic imidazolate framework-8 (ZIF-8) based suspension: Improving the shear thickening effect by controlling the morphological particle-particle interaction[J]. Advanced Powder Technology, 2020, 31(1): 70-77. |
54 | WAGNER F T, LAKSHMANAN B, MATHIAS M F. Electrochemistry and the future of the automobile[J]. The Journal of Physical Chemistry Letters, 2010, 1(14): 2204-2219. |
55 | ZAREI M. Portable biosensing devices for point-of-care diagnostics: Recent developments and applications[J]. TrAC Trends in Analytical Chemistry, 2017, 91: 26-41. |
56 | Mohammad Z, Jamal A. Profiling of nanoparticle-protein interactions by electrophoresis techniques[J]. Analytical and Bioanalytical Chemistry, 2019, 411(1): 79-96. |
57 | BENAJES J, GARCÍA A, Javier MONSALVE-SERRANO, et al. Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology[J]. Applied Thermal Engineering, 2020, 164: 114430. |
58 | MASIAS A, MARCICKI J, PAXTON W A. Opportunities and challenges of lithium ion batteries in automotive applications[J]. ACS Energy Letters, 2021, 6(2): 621-630. |
59 | MADANI S S, SCHALTZ E, KÆR S K. Characterization of the compressive load on a lithium-ion battery for electric vehicle application[J]. Machines, 2021, 9(4): 71. |
60 | DUAN X, NATERER G F. Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5176-5182. |
61 | KIZILEL R, LATEEF A, SABBAH R, et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature[J]. Journal of Power Sources, 2008, 183(1): 370-375. |
62 | KIZILEL R, SABBAH R, SELMAN J R, et al. An alternative cooling system to enhance the safety of Li-ion battery packs[J]. Journal of Power Sources, 2009, 194(2): 1105-1112. |
63 | DING Jie, TIAN Tongfei, MENG Qing, et al. Smart multifunctional fluids for lithium ion batteries: Enhanced rate performance and intrinsic mechanical protection[J]. Scientific Reports, 2013, 3(1): 1-7. |
64 | BERGSTRÖM L. Shear thinning and shear thickening of concentrated ceramic suspensions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 133(1/2): 151-155. |
65 | PETEL O E, OUELLET S, LOISEAU J, et al. The effect of particle strength on the ballistic resistance of shear thickening fluids[J]. Applied Physics Letters, 2013, 102(6): 064103. |
66 | VEITH G M, ARMSTRONG B L, WANG H, et al. Shear thickening electrolytes for high impact resistant batteries[J]. ACS Energy Letters, 2017, 2(9): 2084-2088. |
67 | MARANZANO B J, WAGNER N J. The effects of particle size on reversible shear thickening of concentrated colloidal dispersions[J]. The Journal of Chemical Physics, 2001, 114(23): 10514-10527. |
68 | SHEN B H, ARMSTRONG B L, DOUCET M, et al. Shear thickening electrolyte built from sterically stabilized colloidal particles[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9424-9434. |
69 | SHEN B H, VEITH G M, ARMSTRONG B L, et al. Predictive design of shear-thickening electrolytes for safety considerations[J]. Journal of the Electrochemical Society, 2017, 164(12): A2547-A2551. |
70 | YE Yilan, XIAO Han, REAVES Kelley, et al. Effect of nanorod aspect ratio on shear thickening electrolytes for safety-enhanced batteries[J]. ACS Applied Nano Materials, 2018, 1(6): 2774-2784. |
71 | LIU Kewei, CHENG Chung-Fu, ZHOU Leyao, et al. A shear thickening fluid based impact resistant electrolyte for safe Li-ion batteries[J]. Journal of Power Sources, 2019, 423: 297-304. |
[1] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[2] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[3] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[4] | ZHAO Jian, ZHUO Zewen, DONG Hang, GAO Wenjian. A new method for observation of microstructure of waxy crude oil and its emulsion system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4372-4384. |
[5] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[6] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[7] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[8] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[9] | WANG Hao, HUO Jinda, QU Guorui, YANG Jiaqi, ZHOU Shiwei, LI Bo, WEI Yonggang. Research progress of positive electrode material recycling technology for retired lithium batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2702-2716. |
[10] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[11] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[12] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[13] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[14] | ZHANG Yixuan, HU Wei, LIU Mengyao, JU Jingge, ZHAO Yixia, KANG Weimin. Research progress of polymer electrolytes in zinc-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1397-1410. |
[15] | GUO Shuaishuai, CHEN Jinlu, JIN Liangchenglong, TAO Zui, CHEN Xiaoli, PENG Guowen. Research progress of porous aromatic frameworks based on uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1426-1436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |