Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 4855-4865.DOI: 10.16085/j.issn.1000-6613.2021-2248
• Materials science and technology • Previous Articles Next Articles
LONG Yinying1(), YANG Jian1, GUAN Min1, YANG Yiluo1, CHENG Zhengbai2, CAO Haibing2, LIU Hongbin1(), AN Xingye1()
Received:
2021-11-02
Revised:
2022-02-01
Online:
2022-09-27
Published:
2022-09-25
Contact:
LIU Hongbin, AN Xingye
龙垠荧1(), 杨健1, 管敏1, 杨怡洛1, 程正柏2, 曹海兵2, 刘洪斌1(), 安兴业1()
通讯作者:
刘洪斌,安兴业
作者简介:
龙垠荧(1997—),女,硕士研究生,研究方向为先进纤维与纸基功能材料。E-mail:13508553494@163.com。
基金资助:
CLC Number:
LONG Yinying, YANG Jian, GUAN Min, YANG Yiluo, CHENG Zhengbai, CAO Haibing, LIU Hongbin, AN Xingye. Research progress of lignin-based materials in electrode materials for hybrid supercapacitors[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4855-4865.
龙垠荧, 杨健, 管敏, 杨怡洛, 程正柏, 曹海兵, 刘洪斌, 安兴业. 木质素基材料在混合型超级电容器电极材料中的研究进展[J]. 化工进展, 2022, 41(9): 4855-4865.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2248
1 | GUO Tiezhu, ZHOU Di, LIU Wenfeng, et al. Recent advances in all-in-one flexible supercapacitors[J]. Science China Materials, 2021, 64(1): 27-45. |
2 | KUMAR S, SAEED G, ZHU Ling, et al. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review[J]. Chemical Engineering Journal, 2021, 403: 126352. |
3 | 陈娟, 范利丹, 胡潇依, 等. 固态柔性超级电容器构筑及其材料的研究进展[J]. 化工进展, 2019, 38(10): 4623-4631. |
CHEN Juan, FAN Lidan, HU Xiaoyi, et al. Research progress of construction and materials of solid-state flexible supercapacitors[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4623-4631. | |
4 | XIE Qinxing, BAO Rongrong, XIE Chao, et al. Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density[J]. Journal of Power Sources, 2016, 317: 133-142. |
5 | WANG J, RAN R, SUNARSO J, et al. Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels[J]. Journal of Power Sources, 2017, 347: 259-269. |
6 | LUO Yongfeng, LI Xi, ZHANG Jianxiong, et al. The carbon nanotube fibers for optoelectric conversion and energy storage[J]. Journal of Nanomaterials, 2014, 2014: 580256. |
7 | AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597-1614. |
8 | CHOI C, ASHBY D S, BUTTS D M, et al. Achieving high energy density and high power density with pseudocapacitive materials[J]. Nature Reviews Materials, 2020, 5(1): 5-19. |
9 | 卿乐英. 基于结构热力学的电容器能量密度与功率密度微观机理研究[D]. 上海: 华东理工大学, 2021. |
QING Leying. Micromechanisms on the energy density and power density of capacitors by structured thermodynamics[D]. Shanghai: East China University of Science and Technology, 2021. | |
10 | SHAO Y L, EL-KADY M F, SUN J Y, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemical Reviews, 2018, 118(18): 9233-9280. |
11 | KAVERLAVANI S K, MOOSAVIFARD S E, BAKOUEI A. Designing graphene-wrapped nanoporous CuCo2O4 hollow spheres electrodes for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(27): 14301-14309. |
12 | HARILAL M, VIDYADHARAN B, MISNON I I, et al. One-dimensional assembly of conductive and capacitive metal oxide electrodes for high-performance asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10730-10742. |
13 | MOHD ABDAH M A A, AZMAN N H N, KULANDAIVALU S, et al. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors[J]. Materials & Design, 2020, 186: 108199. |
14 | OUYANG Yu, ZHANG Bin, WANG Chengxin, et al. Bimetallic metal-organic framework derived porous NiCo2S4 nanosheets arrays as binder-free electrode for hybrid supercapacitor[J]. Applied Surface Science, 2021, 542: 148621. |
15 | ŁUKAWSKI D, GRZEŚKOWIAK W, LEKAWA-RAUS A, et al. Flame retardant effect of lignin/carbon nanotubes/potassium carbonate composite coatings on cotton roving[J]. Cellulose, 2020, 27(12): 7271-7281. |
16 | JAYARAMULU K, HORN M, SCHNEEMANN A, et al. Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors[J]. Advanced Materials, 2021, 33(4): 2004560. |
17 | AJJAN F N, CASADO N, RĘBIŚ T, et al. High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(5): 1838-1847. |
18 | SUN Q N, KHUNSUPAT R, AKATO K, et al. A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors[J]. Green Chemistry, 2016, 18(18): 5015-5024. |
19 | GRAICHEN F H M, GRIGSBY W J, HILL S J, et al. Yes, we can make money out of lignin and other bio-based resources[J]. Industrial Crops and Products, 2017, 106: 74-85. |
20 | FANG Wei, YANG Sheng, WANG Xiluan, et al. Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs)[J]. Green Chemistry, 2017, 19(8): 1794-1827. |
21 | 徐慧民, 李莉娟, 欧阳新华, 等. 木质素基超级电容器电极材料研究进展[J]. 中国造纸学报, 2021, 36(1): 80-87. |
XU Huimin, LI Lijuan, OUYANG Xinhua, et al. Research advance in lignin-based supercapacitor materials[J]. Transactions of China Pulp and Paper, 2021, 36(1): 80-87. | |
22 | LIAN Qingwang, ZHOU Gang, LIU Jiatu, et al. Extrinsic pseudocapacitve Li-ion storage of SnS anode via lithiation-induced structural optimization on cycling[J]. Journal of Power Sources, 2017, 366: 1-8. |
23 | JEON J W, ZHANG L B, LUTKENHAUS J L, et al. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications[J]. ChemSusChem, 2015, 8(3): 428-432. |
24 | 呼延永江, 高帆. 石墨烯掺杂对木质素基碳纳米纤维电化学性能影响的研究[J]. 中国造纸学报, 2020, 35(1): 33-38. |
HUYAN Yongjiang, GAO Fan. Effect of graphene doping on the electrochemical properties of lignin-based carbon nanofibers[J]. Transactions of China Pulp and Paper, 2020, 35(1): 33-38. | |
25 | JIANG Can, WANG Zuhao, LI Jiaxiong, et al. RGO-templated lignin-derived porous carbon materials for renewable high-performance supercapacitors[J]. Electrochimica Acta, 2020, 353: 136482. |
26 | WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(40): 14925-14931. |
27 | 彭志远. 全生物质基柔性超级电容器的研究[D]. 长沙: 湖南大学, 2018. |
PENG Zhiyuan. The study of all biomass-based flexible supercapcitors[D]. Changsha: Hunan University, 2018. | |
28 | 冯鑫佳. π-π作用和疏水效应对碱木质素聚集行为的影响[D]. 广州: 华南理工大学, 2012. |
FENG Xinjia. Inlfuence of π-π interaction and hydrophobic effect on the aggregation behavior of alkali lignin[D]. Guangzhou: South China University of Technology, 2012. | |
29 | CHEN Feng, ZHOU Wenjing, YAO Hongfei, et al. Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications[J]. Green Chemistry, 2013, 15(11): 3057-3063. |
30 | ZHOU Zeping, CHEN Feng, KUANG Tairong, et al. Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties[J]. Electrochimica Acta, 2018, 274: 288-297. |
31 | YU B M, GELE A R, WANG L P. Iron oxide/lignin-based hollow carbon nanofibers nanocomposite as an application electrode materials for supercapacitors[J]. International Journal of Biological Macromolecules, 2018, 118(Pt A): 478-484. |
32 | RANJITH K S, RAJU G S R, CHODANKAR N R, et al. Lignin-derived carbon nanofibers-laminated redox-active-mixed metal sulfides for high-energy rechargeable hybrid supercapacitors[J]. International Journal of Energy Research, 2021, 45(5): 8018-8029. |
33 | XIA Xinhui, TU Jiangping, ZHANG Yongqi, et al. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage[J]. ACS Nano, 2012, 6(6): 5531-5538. |
34 | JI Xiaoqin, SUN Delin, ZOU Weihua, et al. Ni/MnO2 doping pulping lignin-based porous carbon as supercapacitors electrode materials[J]. Journal of Alloys and Compounds, 2021, 876: 160112. |
35 | SNOOK G A, KAO P, BEST A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196(1): 1-12. |
36 | WANG Li, LI Xingwei, XU Hailing, et al. Construction of polyaniline/lignin composite with interpenetrating fibrous networks and its improved electrochemical capacitance performances[J]. Synthetic Metals, 2019, 249: 40-46. |
37 | DIXON R, D’SOUZA N, CHEN F, et al. Methods for producing carbon fibers from poly-(caffeyl alcohol): US9890480[P]. 2018-02-13. |
38 | Tian LYU, LIU Mingxian, ZHU Dazhang, et al. Nanocarbon-based materials for flexible all-solid-state supercapacitors[J]. Advanced Materials, 2018, 30(17): e1705489. |
39 | DAI Zhong, REN Penggang, JIN Yanling, et al. Nitrogen-sulphur co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor[J]. Journal of Power Sources, 2019, 437: 226937. |
40 | MAHMOOD F, ZHANG Hanwen, LIN Jian, et al. Laser-induced graphene derived from kraft lignin for flexible supercapacitors[J]. ACS Omega, 2020, 5(24): 14611-14618. |
41 | JHA S, MEHTA S, CHEN Yan, et al. NiWO4 nanoparticle decorated lignin as electrodes for asymmetric flexible supercapacitors[J]. Journal of Materials Chemistry C, 2020, 8(10): 3418-3430. |
42 | MEHTA S, JHA S, HUANG Dali, et al. Microwave synthesis of MnO2-lignin composite electrodes for supercapacitors[J]. Journal of Composites Science, 2021, 5(8): 216. |
43 | NAVARRO S A M, NEREA C, JAVIER C G, et al. Full-cell quinone/hydroquinone supercapacitors based on partially reduced graphite oxide and lignin/PEDOT electrodes[J]. Journal of Materials Chemistry A, 2017, 5(15): 7137-7143. |
44 | WANG Keliang, XU Ming, GU Yan, et al. Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes[J]. Journal of Power Sources, 2016, 332: 180-186. |
45 | CAO Qiping, ZHU Mengni, CHEN Jia'ai, et al. Novel lignin-cellulose-based carbon nanofibers as high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1210-1221. |
46 | PENG Zhiyuan, ZOU Yubo, XU Shiqi, et al. High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22190-22200. |
47 | SHEN H, GELE A R. Facile synthesis of N-doped lignin-based carbon nanofibers decorated with iron oxides for flexible supercapacitor electrodes[J]. Inorganic Chemistry Communications, 2021, 128: 108607. |
48 | AJJAN F N, VAGIN M, RĘBIŚ T, et al. Scalable asymmetric supercapacitors based on hybrid organic/biopolymer electrodes[J]. Advanced Sustainable Systems, 2017, 1(8): 1700054. |
49 | LEI D Y, LI X D, SEO M K, et al. NiCo2O4 nanostructure-decorated PAN/lignin based carbon nanofiber electrodes with excellent cyclability for flexible hybrid supercapacitors[J]. Polymer, 2017, 132: 31-40. |
50 | TANGUY N R, WU H R, NAIR S S, et al. Lignin cellulose nanofibrils as an electrochemically functional component for high-performance and flexible supercapacitor electrodes[J]. ChemSusChem, 2021, 14(4): 1057-1067. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[3] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[4] | REN Jianpeng, WU Caiwen, LIU Huijun, WU Wenjuan. Preparation of lignin-polyaniline composites and adsorption of Congo red [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3087-3096. |
[5] | CHEN Fei, LIU Chengbao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research progress on graphitic carbon nitride based materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576. |
[6] | WANG Yuzhuo, LI Gang. S,N co-doped three-dimensional graphene for all-solid-state supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1974-1982. |
[7] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[8] | CAI Jiangtao, HOU Liuhua, LAN Yujin, ZHANG Chenchen, LIU Guoyang, ZHU Youyu, ZHANG Jianlan, ZHAO Shiyong, ZHANG Yating. Preparation of pitch-based porous carbon materials and application in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1895-1906. |
[9] | CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550. |
[10] | DU Baoning, ZHAO Shan, LIU Xiangqing, ZHANG Yi, XIAO Yaru, ZHANG Shaofei, LI Tiantian, SUN Jinfeng. Preparation and properties of nano porous CuMn-based oxide electrodes [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1484-1492. |
[11] | LIU Dan, FAN Yunjie, WANG Huimin, YAN Zheng, LI Pengfei, LI Jiacheng, CAO Xuebo. High value-added functional porous carbon materials from waste PET and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 969-984. |
[12] | YANG Chengruixue, HUANG Qiyuan, RAN Jiansu, CUI Yuntong, WANG Jianjian. Palladium nanoparticles supported by phosphoric acid-modified SiO2 as efficient catalysts for low-temperature hydrodeoxygenation of vanillin in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5179-5190. |
[13] | WANG Xiaoliang, YU Zhenqiu, CHANG Leiming, ZHAO Haonan, SONG Xiaoqi, GAO Jingsong, ZHANG Yibo, HUANG Chuanhui, LIU Yi, YANG Shaobin. Research progress in the preparation of hydroxide/oxide supercapacitor electrodes by electrodeposition [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5272-5285. |
[14] | ZHANG Peng, WANG Shaoqing, LI Zhihe, ZHANG Andong, GAO Liang, WAN Zhen, SONG Ning. Preparation and properties of composite adsorbents by co-pyrolysis of red mud and lignin [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 407-414. |
[15] | LI Xing, HUANG Hongyu, OSAKA Yugo, HUHE Taoli, XIAO Linfa, LI Jun. Study on the influencing factors of the adsorption performance of carbon materials for the sulfur dioxide removal [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4963-4972. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |