Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (8): 4386-4396.DOI: 10.16085/j.issn.1000-6613.2021-2007
• Materials science and technology • Previous Articles Next Articles
Received:
2021-09-23
Revised:
2021-10-21
Online:
2022-08-22
Published:
2022-08-25
Contact:
JIN Wei
通讯作者:
金玮
CLC Number:
JIN Wei. Microporous carbon modified separator for high performance lithium sulfur batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4386-4396.
金玮. 微孔碳材料修饰的隔膜用于高性能锂硫电池[J]. 化工进展, 2022, 41(8): 4386-4396.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2007
隔膜 | 循环前 | 循环100次后 | |||
---|---|---|---|---|---|
Rs/Ω | Rct/Ω | Rs/Ω | Rt/Ω | Rct/Ω | |
PP | 7.54 | 44.01 | 3.42 | 11.61 | 28.52 |
UMC/PP | 7.43 | 18.99 | 3.28 | 6.78 | 14.56 |
隔膜 | 循环前 | 循环100次后 | |||
---|---|---|---|---|---|
Rs/Ω | Rct/Ω | Rs/Ω | Rt/Ω | Rct/Ω | |
PP | 7.54 | 44.01 | 3.42 | 11.61 | 28.52 |
UMC/PP | 7.43 | 18.99 | 3.28 | 6.78 | 14.56 |
1 | CHEN Y J, LIU Z E, SUN L, et al. Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte[J]. Journal of Power Sources, 2018, 390: 215-223. |
2 | 蔡诗怡, 李津瑜, 吴丽霞, 等. 金属有机框架材料在锂硫电池的应用前沿进展[J]. 化工进展, 2021, 40(6): 3046-3057. |
CAI S Y, LI J Y, WU L X, et al. Progress of MOF materials applied in Li-S batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3046-3057. | |
3 | HU Y, PAN J, LI Q, et al. Poly(ionic liquid)-based conductive interlayer as an efficient polysulfide adsorbent for a highly stable lithium-sulfur battery[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(30): 11396-11403. |
4 | LI R L, RAO D W, ZHOU J B, et al. Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries[J]. Nature Communications, 2021, 12: 3102. |
5 | BHARGAV A, HE J R, GUPTA A, et al. Lithium-sulfur batteries: attaining the critical metrics[J]. Joule, 2020, 4(2): 285-291. |
6 | YANG J H, YANG X F, CHEONG J L, et al. Nanoboxes with a porous MnO core and amorphous TiO2 shell as a mediator for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2021, 9(8): 4952-4961. |
7 | LI Y J, GUO S J. Material design and structure optimization for rechargeable lithium-sulfur batteries[J]. Matter., 2021, 4(4): 1142-1188. |
8 | HOU L P, ZHANG X Q, LI B Q, et al. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries[J]. Materials Today, 2021, 45: 62-76. |
9 | GUPTA A, MANTHIRAM A. Unifying the clustering kinetics of lithium polysulfides with the nucleation behavior of Li2S in lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2021, 9(22): 13242-13251. |
10 | 王杰, 孙晓刚, 陈珑, 等. 多壁碳纳米管夹层抑制锂硫电池穿梭效应[J]. 化工进展, 2018, 37(3): 1070-1075. |
WANG J, SUN X G, CHEN L, et al. Multi-walled carbon nanotube interlayer for checking of the shuttle effect of lithium-sulphur battery[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1070-1075. | |
11 | JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506. |
12 | HONG S K, WANG Y, KIM N, et al. Polymer-based electrolytes for all-solid-state lithium-sulfur batteries: from fundamental research to performance improvement[J]. Journal of Materials Science, 2021, 56(14): 8358-8382. |
13 | XU R, XIAO B W, XUAN C, et al. Facile and powerful in situ polymerization strategy for sulfur-based all-solid polymer electrolytes in lithium batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34274-34281. |
14 | SUN W H, SUN X G, AKHTAR N, et al. Attapulgite nanorods assisted surface engineering for separator to achieve high-performance lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2020, 48: 364-374. |
15 | XIA S X, ZHANG X, YANG G Z, et al. Bifunctional fluorinated separator enabling polysulfide trapping and Li deposition for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 11920-11929. |
16 | WANG J C, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710. |
17 | NIE B S, LIU X F, YANG L L, et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel, 2015, 158: 908-917. |
18 | ZHU Q Z, ZHAO Q, AN Y B, et al. Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery[J]. Nano Energy, 2017, 33: 402-409. |
19 | PENG H J, HUANG J Q, CHENG X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(24): 1700260. |
20 | CHEN L, YU H, LI W X, et al. Interlayer design based on carbon materials for lithium-sulfur batteries: a review[J]. Journal of Materials Chemistry A, 2020, 8(21): 10709-10735. |
21 | DENG N P, KANG W M, LIU Y B, et al. A review on separators for lithiumsulfur battery: progress and prospects[J]. Journal of Power Sources, 2016, 331: 132-155. |
22 | YUAN L X, YUAN H P, QIU X P, et al. Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries[J]. Journal of Power Sources, 2009, 189(2): 1141-1146. |
23 | LEE S Y, CHOI Y, KIM J K, et al. Biomass-garlic-peel-derived porous carbon framework as a sulfur host for lithium-sulfur batteries[J]. Journal of Industrial and Engineering Chemistry, 2021, 94: 272-281. |
24 | MOORTHY B, KWON S, KIM J H, et al. Tin sulfide modified separator as an efficient polysulfide trapper for stable cycling performance in Li-S batteries[J]. Nanoscale Horizons, 2019, 4(1): 214-222. |
25 | TIAN Y, LI G R, ZHANG Y G, et al. Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium-sulfur batteries[J]. Advanced Materials, 2020, 32(4): 1904876. |
26 | ALI T, YAN C L. 2 D Materials for inhibiting the shuttle effect in advanced lithium-sulfur batteries[J]. ChemSusChem, 2020, 13(6): 1447-1479. |
27 | TAO X Y, WANG J G, LIU C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nature Communications, 2016, 7: 11203. |
28 | HU Y, CHENG C, YAN T R, et al. Catalyzing polysulfide redox conversion for promoting the electrochemical performance of lithium-sulfur batteries by CoFe alloy[J]. Chemical Engineering Journal, 2021, 421: 129997. |
29 | WEI B B, SHANG C Q, WANG X, et al. Conductive FeOOH as multifunctional interlayer for superior lithium-sulfur batteries[J]. Small, 2020, 16(34): 2002789. |
30 | CHEN H H, XIAO Y W, CHEN C, et al. Conductive MOF-modified separator for mitigating the shuttle effect of lithium-sulfur battery through a filtration method[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11459-11465. |
31 | HUANG W L, LIN Z J, LIU H T, et al. Enhanced polysulfide redox kinetics electro-catalyzed by cobalt phthalocyanine for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018, 6(35): 17132-17141. |
32 | TU J X, LI H J, LAN T B, et al. Facile synthesis of TiN nanocrystals/graphene hybrid to chemically suppress the shuttle effect for lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2020, 822: 153751. |
33 | HOU C X, WANG J, DU W, et al. One-pot synthesized molybdenum dioxide-molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage[J]. Journal of Materials Chemistry A, 2019, 7(22): 13460-13472. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[6] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[7] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[8] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[9] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[10] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[11] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[12] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[13] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[14] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[15] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |