Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3816-3823.DOI: 10.16085/j.issn.1000-6613.2021-1715
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
XU Pei1(), JIA Xuan2, WANG Yong1, QI Xuejiao1, ZHAO Yujiao2, LI Mingxiao1()
Received:
2021-08-11
Revised:
2021-09-16
Online:
2022-07-23
Published:
2022-07-25
Contact:
LI Mingxiao
徐沛1(), 贾璇2, 王勇1, 亓雪娇1, 赵玉娇2, 李鸣晓1()
通讯作者:
李鸣晓
作者简介:
徐沛(1997—),男,硕士研究生,研究方向为微生物电解池脱碳。E-mail: 基金资助:
CLC Number:
XU Pei, JIA Xuan, WANG Yong, QI Xuejiao, ZHAO Yujiao, LI Mingxiao. Effect of flow field on the CO2 reduction performance and products of MEC biocathode[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3816-3823.
徐沛, 贾璇, 王勇, 亓雪娇, 赵玉娇, 李鸣晓. 流场对MEC生物阴极CO2还原性能与产物的影响[J]. 化工进展, 2022, 41(7): 3816-3823.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1715
周期 | 循环组消耗或转移电子量/C | 对照组消耗或转移电子量/C | ||||||
---|---|---|---|---|---|---|---|---|
甲烷Q | 乙酸Q | 转移Qw | 甲烷Q | 乙酸Q | 转移Qw | |||
1 | 376.980 | 7.520 | 403.970 | 302.550 | 0 | 396.800 | ||
2 | 436.590 | 162.600 | 629.040 | 289.110 | 10.540 | 481.355 | ||
3 | 440.730 | 176.100 | 764.150 | 310.130 | 30.850 | 434.892 | ||
4 | 617.850 | 92.550 | 759.380 | 323.910 | 121.470 | 446.472 | ||
5 | 232.600 | 327.130 | 761.760 | 347.690 | 59.770 | 481.856 | ||
6 | 220.880 | 386.260 | 617.190 | 386.970 | 7.0700 | 483.160 | ||
7 | 176.430 | 483.950 | 697.660 | 355.960 | 0 | 484.719 |
周期 | 循环组消耗或转移电子量/C | 对照组消耗或转移电子量/C | ||||||
---|---|---|---|---|---|---|---|---|
甲烷Q | 乙酸Q | 转移Qw | 甲烷Q | 乙酸Q | 转移Qw | |||
1 | 376.980 | 7.520 | 403.970 | 302.550 | 0 | 396.800 | ||
2 | 436.590 | 162.600 | 629.040 | 289.110 | 10.540 | 481.355 | ||
3 | 440.730 | 176.100 | 764.150 | 310.130 | 30.850 | 434.892 | ||
4 | 617.850 | 92.550 | 759.380 | 323.910 | 121.470 | 446.472 | ||
5 | 232.600 | 327.130 | 761.760 | 347.690 | 59.770 | 481.856 | ||
6 | 220.880 | 386.260 | 617.190 | 386.970 | 7.0700 | 483.160 | ||
7 | 176.430 | 483.950 | 697.660 | 355.960 | 0 | 484.719 |
样品 | Shannon指数 | Simpson指数 | Ace指数 | Chao指数 | 覆盖率 |
---|---|---|---|---|---|
A | 3.608 | 0.050 | 249.54 | 259 | 0.999383 |
S1 S2 C1 C2 | 4.202 4.284 4.141 3.637 | 0.037 0.031 0.035 0.068 | 388.27 377.28 378.89 315.36 | 382.16 373.45 385.63 312.70 | 0.999256 0.999508 0.99911 0.999311 |
样品 | Shannon指数 | Simpson指数 | Ace指数 | Chao指数 | 覆盖率 |
---|---|---|---|---|---|
A | 3.608 | 0.050 | 249.54 | 259 | 0.999383 |
S1 S2 C1 C2 | 4.202 4.284 4.141 3.637 | 0.037 0.031 0.035 0.068 | 388.27 377.28 378.89 315.36 | 382.16 373.45 385.63 312.70 | 0.999256 0.999508 0.99911 0.999311 |
1 | 郑韶娟, 陆雪琴, 张衷译, 等. 微生物电解池: 生物电催化辅助CO2甲烷化技术[J]. 环境化学, 2019, 38(7): 1666-1674. |
ZHENG Shaojuan, LU Xueqin, ZHANG Zhongyi, et al. Microbial electrolysis cell (MEC): a new platform for CO2 bioelectromethanogenesis assisted by bioelectrocatalysis[J]. Environmental Chemistry, 2019, 38(7): 1666-1674. | |
2 | 孙超颖, 李英杰, 闫宪尧, 等. 钙循环捕集CO2后CaO的水合/脱水热化学储热性能[J]. 化工进展, 2020, 39(5): 1734-1743. |
SUN Chaoying, LI Yingjie, YAN Xianyao, et al. Hydration/dehydration thermochemical heat storage performance of CaO from CO2 capture cycles[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1734-1743. | |
3 | 陈凯宏, 李红茹, 何良年. CO2活化和转化策略研究进展[J]. 有机化学, 2020, 40(8): 2195-2207. |
CHEN Kaihong, LI Hongru, HE Liangnian. Advance and prospective on CO2 activation and transformation strategy[J]. Chinese Journal of Organic Chemistry, 2020, 40(8): 2195-2207. | |
4 | 田华, 孙瑞, 宋春风, 等. 耦合膜分离的新型CO2低温捕集系统性能优化[J]. 化工进展, 2020, 39(7): 2884-2892. |
TIAN Hua, SUN Rui, SONG Chunfeng, et al. Optimization of novel hybrid cryogenic CO2 capture process with membrane separation[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2884-2892. | |
5 | DEL PILAR ANZOLA ROJAS M, MATEOS R, SOTRES A, et al. Microbial electrosynthesis (MES) from CO2 is resilient to fluctuations in renewable energy supply[J]. Energy Conversion and Management, 2018, 177: 272-279. |
6 | CHENG S, XING D, CALL D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology, 2009, 43(10): 3953-3958. |
7 | LI J, LI Z, XIAO S, et al. Startup cathode potentials determine electron transfer behaviours of biocathodes catalysing CO2 reduction to CH4 in microbial electrosynthesis[J]. Journal of CO2 Utilization, 2020, 35: 169-175. |
8 | 王博, 高冠道, 李凤祥, 等. 微生物电解池应用研究进展[J]. 化工进展, 2017, 36(3): 1084-1092. |
WANG Bo, GAO Guandao, LI Fengxiang, et al. Advance in application of microbial electrolysis cells[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 1084-1092. | |
9 | 毛政中, 孙怡, 黄志鹏, 等. 微生物电解池产甲烷技术研究进展[J]. 化工学报, 2019, 70(7): 2411-2425. |
MAO Zhengzhong, SUN Yi, HUANG Zhipeng, et al. Progress of research on methanogenic microbial electrolysis cell[J]. CIESC Journal, 2019, 70(7): 2411-2425. | |
10 | CRISTIANI L, ZEPPILLI M, PORCU C, et al. Ammonium recovery and biogas upgrading in a tubular micro-pilot microbial electrolysis cell (MEC)[J]. Molecules, 2020, 25(12): 2723. |
11 | SUN M, ZHAI L F, MU Y, et al. Bioelectrochemical element conversion reactions towards generation of energy and value-added chemicals[J]. Progress in Energy and Combustion Science, 2020, 77: 100814. |
12 | JIANG Y, SU M, ZHANG Y, et al. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate[J]. International Journal of Hydrogen Energy, 2013, 38(8): 3497-3502. |
13 | LIU C Q, YUAN X, GU Y Y, et al. Enhancement of bioelectrochemical CO2 reduction with a carbon brush electrode via direct electron transfer[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(30): 11368-11375. |
14 | WANG H C, CUI D, YANG L H, et al. Increasing the bio-electrochemical system performance in azo dye wastewater treatment: reduced electrode spacing for improved hydrodynamics[J]. Bioresource Technology, 2017, 245: 962-969. |
15 | CHOU H H, HUANG J S, JHENG J H, et al. Influencing effect of intra-granule mass transfer in expanded granular sludge-bed reactors treating an inhibitory substrate[J]. Bioresource Technology, 2008, 99(9): 3403-3410. |
16 | GAO L, LIU W Z, CUI M H, et al. Enhanced methane production in an up-flow microbial electrolysis assisted reactors: hydrodynamics characteristics and electron balance under different spatial distributions of bioelectrodes[J]. Water Research, 2021, 191: 116813. |
17 | GAO L, THANGAVEL S, GUO Z C, et al. Hydrodynamics analysis for an upflow integrated anaerobic digestion reactor with microbial electrolysis under different hydraulic retention times: effect of bioelectrode spatial distribution on functional communities involved in methane production and organic removal[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 190-199. |
18 | TAVARES C R G, SANT'ANNA G L, CAPDEVILLE B. The effect of air superficial velocity on biofilm accumulation in a three-phase fluidized-bed reactor[J]. Water Research, 1995, 29(10): 2293-2298. |
19 | 黄如一, 蒋辉霞, 吴进, 等. 水力搅拌加速沼气工程启动的研究(Ⅰ)—实验部分[J]. 中国沼气, 2020, 38(4): 45-50. |
HUANG Ruyi, JIANG Huixia, WU Jin, et al. Study on hydraulic agitation to accelerate the start-up of biogas project Ⅰ: Experimental part[J]. China Biogas, 2020, 38(4): 45-50. | |
20 | ZEPPILLI M, VILLANO M, MAJONE M. Microbial electrolysis cell to enhance energy recovery from wastewater treatment[J]. Chemical Engineering Transactions, 2015, 43: 2341-2346. |
21 | KUNDU K, BERGMANN I, KLOCKE M, et al. Influence of hydrodynamic shear on performance and microbial community structure of a hybrid anaerobic reactor[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(3): 462-470. |
22 | BUZZINI A P, SAKAMOTO I K, VARESCHE M B, et al. Evaluation of the microbial diversity in an UASB reactor treating wastewater from an unbleached pulp plant[J]. Process Biochemistry, 2006, 41(1): 168-176. |
23 | VAN EERTEN-JANSEN M C A A, JANSEN N C, PLUGGE C M, et al. Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(5): 963-970. |
24 | ZHOU H H, XING D F, XU M Y, et al. Biogas upgrading and energy storage via electromethanogenesis using intact anaerobic granular sludge as biocathode[J]. Applied Energy, 2020, 269: 115101. |
25 | ZHENG S, LIU F, WANG B, et al. Methanobacterium capable of direct interspecies electron transfer[J]. Environmental Science & Technology, 2020, 54(23): 15347-15354. |
26 | ROTARU A E, SHRESTHA P M, LIU F, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri [J]. Appl Environ Microbiol, 2014, 80(15): 4599-4605. |
27 | YANG H Y, BAO B L, LIU J, et al. Temperature dependence of bioelectrochemical CO2 conversion and methane production with a mixed-culture biocathode[J]. Bioelectrochemistry, 2018, 119: 180-188. |
28 | HOFFMANN R A, GARCIA M L, VESKIVAR M, et al. Effect of shear on performance and microbial ecology of continuously stirred anaerobic digesters treating animal manure[J]. Biotechnology and Bioengineering, 2008, 100(1): 38-48. |
29 | KOBAYASHI T, YASUDA D, LI Y Y, et al. Characterization of start-up performance and archaeal community shifts during anaerobic self-degradation of waste-activated sludge[J]. Bioresource Technology, 2009, 100(21): 4981-4988. |
30 | GUO J H, PENG Y Z, NI B J, et al. Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing[J]. Microbial Cell Factories, 2015, 14(1): 1-11. |
31 | ZHANG J B, WU P X, HAO B, et al. Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001[J]. Bioresource Technology, 2011, 102(21): 9866-9869. |
32 | LU Y, LI S N, SHA M, et al. Cascading effects caused by fenoxycarb in freshwater systems dominated by Daphnia carinata and Dolerocypris sinensis [J]. Ecotoxicology and Environmental Safety, 2020, 203: 111022. |
33 | LI Y, XU H P, YI X L, et al. Study of two-phase anaerobic digestion of corn stover: focusing on the conversion of volatile fatty acids and microbial characteristics in UASB reactor[J]. Industrial Crops and Products, 2021, 160: 113097. |
34 | DU Q, MU Q H, WU G X. Metagenomic and bioanalytical insights into quorum sensing of methanogens in anaerobic digestion systems with or without the addition of conductive filter[J]. Science of the Total Environment, 2021, 763: 144509. |
35 | LEE S Y, OH Y K, LEE S, et al. Recent developments and key barriers to microbial CO2 electrobiorefinery[J]. Bioresource Technology, 2021, 320: 124350. |
36 | RABUS R, VENCESLAU S S, WÖHLBRAND L, et al. A post-genomic view of the ecophysiology, catabolism and biotechnological relevance of sulphate-reducing prokaryotes[J]. Advances in Microbial Physiology, 2015, 66: 55-321. |
37 | JIA X, LI M X, WANG Y, et al. Enhancement of hydrogen production and energy recovery through electro-fermentation from the dark fermentation effluent of food waste[J]. Environmental Science and Ecotechnology, 2020, 1: 100006. |
38 | LIU C Q, SUN D Z, ZHAO Z Q, et al. Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer[J]. Bioresource Technology, 2019, 291: 121877. |
39 | BRYANT M P, CAMPBELL L L, REDDY C A, et al. Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria[J]. Applied and Environmental Microbiology, 1977, 33(5): 1162-1169. |
[1] | CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881. |
[2] | ZHENG Xiaomei, LIN Rujing, ZHOU Wenjing, XU Ling, ZHANG Hongning, ZHANG Xinying, XIE Li. Review on cathode materials for CO2 methanation assisted by microbial electrolytic cell [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2476-2486. |
[3] | JING Shuangyi, LIU Chao, CAI Yiting, LI Weiping, YU Linghong, HOU Na. Enhancement of nitrification performance of MBBR at low temperature by magnetic carrier and its microbial community analysis [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2180-2190. |
[4] | YIN Honghe, SHEN Shaochuan, QI Liang, YAO Kejian. Hydrodynamic performances of a novel multiple downcomer tray and related CFD analysis [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 601-608. |
[5] | CHEN Long, LI Xiaxia, LI Weixiang, QI Ri, DENG Xin, WU Binxin. Research progress in computational fluid dynamics simulation of melt-blown fabric production [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 537-553. |
[6] | LI Zhenghan, TU Zhengkai. Research progress of simulation models of proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5272-5296. |
[7] | ZHANG Yuekan, GE Jiangbo, LIU Peikun, YANG Xinghua. Flow field characteristics and separation performance of multi-inlet hydrocyclone [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 86-94. |
[8] | LUO Laiming, CHEN Si’an, WANG Haining, ZHANG Jin, LU Shanfu, XIANG Yan. Simulation and optimization of large-scale (200cm2) multiple-serpentine flow field for high temperature polymer electrolyte membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4975-4985. |
[9] | WANG Yan, CAO Zhikang, WANG Yingyao, HU Qiong, HU Peng, XIAO Yexiang. Validation of flow regime prediction model and differences of velocity component selection for rotating flow field [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2389-2400. |
[10] | ZHANG Jianwei, GAO Weifeng, FENG Ying, ZHANG Yifan, DONG Xin. Research progress of vortex characteristics of impinging stream reactor [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5883-5893. |
[11] | Fei LI, Haijie CHEN, Zongkang SUN, Xiaobing GU, Yuyong BAI, Fei GAO, Linjun YANG. Numerical evaporation characteristics of desulfurization wastewater by rotating spray with different hot air distributor structure [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 385-392. |
[12] | Peng LI,Xiaoguang LI,Fengling YANG,Zhaoqiang LIU,Ruiqiang QI,Kai MAN. Effect of shape on performance of single-acting vacuum pump [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 864-871. |
[13] | Shunzuo QIU,Guorong WANG,Guangshen WANG,Lin ZHONG,Xuefeng LI,Teng WANG. The analysis of flow filed and performance of spiral separator for natural gas hydrate purification [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4856-4864. |
[14] | Zhanpeng SUN,Guogang SUN,Jiyang CHAO,Qinggang LIU,Xinqi YU. Flow field characteristics and particle classification performance of a new cyclonic classifier [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4873-4879. |
[15] | Xiaofu GUO,Junsheng YUAN,Yingying ZHAO,Fei LI,Zhiyong JI. Flow field simulation of large ion exchange column filled with zeolite [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4831-4837. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |