Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (6): 3249-3262.DOI: 10.16085/j.issn.1000-6613.2021-1482
• Resources and environmental engineering • Previous Articles Next Articles
LYU Ying1,2,3,4(), HU Xuewu1,2,3,4, CHEN Susu1,3,4, LIU Xingyu1,3,5(), CHEN Bowei1,3,5, ZHANG Mingjiang1,3,5
Received:
2020-07-13
Revised:
2020-07-29
Online:
2022-06-21
Published:
2022-06-10
Contact:
LIU Xingyu
吕莹1,2,3,4(), 胡学武1,2,3,4, 陈素素1,3,4, 刘兴宇1,3,5(), 陈勃伟1,3,5, 张明江1,3,5
通讯作者:
刘兴宇
作者简介:
吕莹(1994—),女,博士研究生, 研究方向为环境污染微生物修复。E-mail:基金资助:
CLC Number:
LYU Ying, HU Xuewu, CHEN Susu, LIU Xingyu, CHEN Bowei, ZHANG Mingjiang. Advances in microbial remediation of soils polluted by polycyclic aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3249-3262.
吕莹, 胡学武, 陈素素, 刘兴宇, 陈勃伟, 张明江. 多环芳烃污染土壤的微生物修复技术研究进展[J]. 化工进展, 2022, 41(6): 3249-3262.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1482
种类 | 属名 | 菌株命名 | PAHs | 文献来源 |
---|---|---|---|---|
细菌 | 红球菌属(Rhodococcus) | A2-3、qingshengii FF、P14、BAP-1、IcdP1 | 萘、芴、菲、芘、苯并芘、荧蒽、蒽、屈、苯并蒽、苯并荧蒽 | [ |
假单胞菌属(Pseudomonas) | SA3、ISTPY2、PA06、AH-40、PB1、PB2、P2 | 萘、芘、菲、芴 | [ | |
棒杆菌属(Corynebacterium) | HRJ4 | 萘、菲、芘 | [ | |
微球菌属(Micrococcus) | D12 | 萘、菲、荧蒽、芘 | [ | |
产碱杆菌属(Alcaligenes) | YGD2906、BDB4、DFA4、AFS-5 | 菲、芘、苊、屈 | [ | |
分枝杆菌属(Mycobacterium) | WY10、SBSW、YOWG、SKEY、EPa45、NJS-1、NJS-P、A1-PYR | 菲、荧蒽、芘、荧蒽、蒽、苯并芘、芴、 苯并蒽 | [ | |
鞘脂菌属(Sphingobium) | MP9-4、FB3、B1、A4、KK22 | 菲、蒽、荧蒽、芘、苯并芘、萘、苊烯、苊、芴、屈、苯并荧蒽、茚并芘、苯并苝 | [ | |
放线菌 | 诺卡氏菌属(Nocardia) | TRH1、TSH1 | 萘、菲、芘、蒽 | [ |
真菌 | 平革菌属(Phanerochaete) | HHB1625 | 菲、萘、芘、苯并蒽、蒽、苝、苯并芘 | [ |
侧耳属(Pleurotus) | F032、F043、D1、IBB903-A | 芴、荧蒽、菲、蒽、芘、屈、萘、苊、苊烯、苯并菲、苯并蒽、苯并荧蒽、苯并芘、苝 | [ | |
云芝属(Trametes) | Zlh237、PBURU12 | 蒽、菲、芘、苯并芘、芴、蒽、苊、苊烯 | [ | |
青霉属(Penicillium) | SYJ-1、NPDF1239-K3-F21 | 芘、苯并芘、菲、蒽、萘、荧蒽 | [ | |
曲霉属(Aspergillus) | NPDF190-C1-26 | 萘、芘、菲、蒽、荧蒽、苊、芴、苯并蒽、屈、苯并荧蒽、苯并芘、苯并苝、茚并芘 | [ | |
小克银汉霉属(Cunninghamella) | IM1785/21Gp、ATCC36112 | 菲、萘、苊、菲、蒽、荧蒽、芘、苯并蒽、苯并荧蒽、苯并芘、茚并芘 | [ | |
藻类 | 阿格门氏藻属(Agmenellum) | PR-6 | 菲、萘 | [ |
颤藻属(Oscillatoria) | JCM、OSC | 萘、菲 | [ | |
栅藻属(Scenedesmus) | ES-55 | 苯并蒽、苯并芘、甲基菲、菲 | [ | |
月牙藻属(Selenastrum) | 苯并芘、苯并蒽、苯并荧蒽、菲、荧蒽、芘、二苯并蒽、茚并芘、苯并苝 | [ |
种类 | 属名 | 菌株命名 | PAHs | 文献来源 |
---|---|---|---|---|
细菌 | 红球菌属(Rhodococcus) | A2-3、qingshengii FF、P14、BAP-1、IcdP1 | 萘、芴、菲、芘、苯并芘、荧蒽、蒽、屈、苯并蒽、苯并荧蒽 | [ |
假单胞菌属(Pseudomonas) | SA3、ISTPY2、PA06、AH-40、PB1、PB2、P2 | 萘、芘、菲、芴 | [ | |
棒杆菌属(Corynebacterium) | HRJ4 | 萘、菲、芘 | [ | |
微球菌属(Micrococcus) | D12 | 萘、菲、荧蒽、芘 | [ | |
产碱杆菌属(Alcaligenes) | YGD2906、BDB4、DFA4、AFS-5 | 菲、芘、苊、屈 | [ | |
分枝杆菌属(Mycobacterium) | WY10、SBSW、YOWG、SKEY、EPa45、NJS-1、NJS-P、A1-PYR | 菲、荧蒽、芘、荧蒽、蒽、苯并芘、芴、 苯并蒽 | [ | |
鞘脂菌属(Sphingobium) | MP9-4、FB3、B1、A4、KK22 | 菲、蒽、荧蒽、芘、苯并芘、萘、苊烯、苊、芴、屈、苯并荧蒽、茚并芘、苯并苝 | [ | |
放线菌 | 诺卡氏菌属(Nocardia) | TRH1、TSH1 | 萘、菲、芘、蒽 | [ |
真菌 | 平革菌属(Phanerochaete) | HHB1625 | 菲、萘、芘、苯并蒽、蒽、苝、苯并芘 | [ |
侧耳属(Pleurotus) | F032、F043、D1、IBB903-A | 芴、荧蒽、菲、蒽、芘、屈、萘、苊、苊烯、苯并菲、苯并蒽、苯并荧蒽、苯并芘、苝 | [ | |
云芝属(Trametes) | Zlh237、PBURU12 | 蒽、菲、芘、苯并芘、芴、蒽、苊、苊烯 | [ | |
青霉属(Penicillium) | SYJ-1、NPDF1239-K3-F21 | 芘、苯并芘、菲、蒽、萘、荧蒽 | [ | |
曲霉属(Aspergillus) | NPDF190-C1-26 | 萘、芘、菲、蒽、荧蒽、苊、芴、苯并蒽、屈、苯并荧蒽、苯并芘、苯并苝、茚并芘 | [ | |
小克银汉霉属(Cunninghamella) | IM1785/21Gp、ATCC36112 | 菲、萘、苊、菲、蒽、荧蒽、芘、苯并蒽、苯并荧蒽、苯并芘、茚并芘 | [ | |
藻类 | 阿格门氏藻属(Agmenellum) | PR-6 | 菲、萘 | [ |
颤藻属(Oscillatoria) | JCM、OSC | 萘、菲 | [ | |
栅藻属(Scenedesmus) | ES-55 | 苯并蒽、苯并芘、甲基菲、菲 | [ | |
月牙藻属(Selenastrum) | 苯并芘、苯并蒽、苯并荧蒽、菲、荧蒽、芘、二苯并蒽、茚并芘、苯并苝 | [ |
环境条件 | 污染物 | 最佳条件 | 重要结论 | 文献来源 |
---|---|---|---|---|
土壤水分 | 总石油烃(TPH)和多环芳烃(PAHs) | 湿度为15%~30% | 过高的湿度限制了空气在地下的流动,从而降低了氧气的可用性,而缺乏水分则抑制了微生物的活动 | [ |
土壤含氧量 | PAHs | 液相体系对(PAHs去除效果显著优于半固相体系) | 相对均匀的液相生物反应器保证了较高的氧传质,从而导致体系中PAHs的解吸速率、好氧菌的活性均高于半固相体系 | [ |
蒽 | 培养阶段中增加曝气 | 促进蒽的生物降解及其过氧化物酶介导的氧化产物蒽醌的积累 | [ | |
营养物质含量 | 苯并[a]芘 | 添加适量的酵母粉 | 提高污染物的生物可降解性 | [ |
荧蒽 | 添加适量的麦芽糖 | 营养物质的加入促进微生物的生长代谢 | [ | |
土壤酸碱度 | 菲 | pH=7 | 酸碱度过高或过低导致微生物活性降低或者死亡 | [ |
总石油烃(TPH) | pH=7.5 | 土壤的酸碱度直接影响微生物的生物活性 | [ | |
温度 | 菲 | 维持适当的培养温度 | 植物组织的质外体和共质体中的菲积累量与温度具有相关性 | [ |
菲 | 培养温度为30~37℃ | 温度直接影响微生物的生长繁殖及其代谢活动 | [ |
环境条件 | 污染物 | 最佳条件 | 重要结论 | 文献来源 |
---|---|---|---|---|
土壤水分 | 总石油烃(TPH)和多环芳烃(PAHs) | 湿度为15%~30% | 过高的湿度限制了空气在地下的流动,从而降低了氧气的可用性,而缺乏水分则抑制了微生物的活动 | [ |
土壤含氧量 | PAHs | 液相体系对(PAHs去除效果显著优于半固相体系) | 相对均匀的液相生物反应器保证了较高的氧传质,从而导致体系中PAHs的解吸速率、好氧菌的活性均高于半固相体系 | [ |
蒽 | 培养阶段中增加曝气 | 促进蒽的生物降解及其过氧化物酶介导的氧化产物蒽醌的积累 | [ | |
营养物质含量 | 苯并[a]芘 | 添加适量的酵母粉 | 提高污染物的生物可降解性 | [ |
荧蒽 | 添加适量的麦芽糖 | 营养物质的加入促进微生物的生长代谢 | [ | |
土壤酸碱度 | 菲 | pH=7 | 酸碱度过高或过低导致微生物活性降低或者死亡 | [ |
总石油烃(TPH) | pH=7.5 | 土壤的酸碱度直接影响微生物的生物活性 | [ | |
温度 | 菲 | 维持适当的培养温度 | 植物组织的质外体和共质体中的菲积累量与温度具有相关性 | [ |
菲 | 培养温度为30~37℃ | 温度直接影响微生物的生长繁殖及其代谢活动 | [ |
1 | SAZYKIN I S, MINKINA T M, KHMELEVTSOVA L E, et al. Polycyclic aromatic hydrocarbons, antibiotic resistance genes, toxicity in the exposed to anthropogenic pressure soils of the Southern Russia[J]. Environmental Research, 2021, 194: 110715. |
2 | YAN J, WANG L, FU P P, et al. Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list[J]. Mutat. Res., 2004, 557(1): 99-108. |
3 | 蔡文良, 罗固源, 许晓毅, 等. 嘉陵江重庆段表层水体多环芳烃的污染特征[J]. 环境科学, 2012, 33(7): 2341-2346. |
CAI Wenliang, LUO Guyuan, XU Xiaoyi, et al. Contamination characteristics of polycyclic aromatic hydrocarbons(PAHs) in surface water from Jialing river in Chongqing[J]. Environmental Science, 2012, 33(7): 2341-2346. | |
4 | HARMSEN J, RIETRA R P J J. 25 Years monitoring of PAHs and petroleum hydrocarbons biodegradation in soil[J]. Chemosphere, 2018, 207: 229-238. |
5 | LU C, HONG Y, LIU J, et al. A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation[J]. Environmental Pollution, 2019, 251: 773-782. |
6 | CHEN M, XU P, ZENG G M, et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs[J]. Biotechnology Advances, 2015, 33(6): 745-755. |
7 | 曾军, 吴宇澄, 林先贵. 多环芳烃污染土壤微生物修复研究进展[J]. 微生物学报, 2020, 60(12): 2804-2815. |
ZENG Jun, WU Chengwu, LIN Xiangui. Advances in microbial remediation of soils polluted by polycyclic aromatic hydrocarbons[J]. Acta Microbiologica Sinica, 2020, 60(12): 2804-2815. | |
8 | KRONENBERG M, TRABLY E, BERNET N, et al. Biodegradation of polycyclic aromatic hydrocarbons: using microbial bioelectrochemical systems to overcome an impasse[J]. Environmental Pollution, 2017, 231: 509-523. |
9 | 韩玲, 高照琴, 白军红, 等. 城市化背景下珠江三角洲典型湿地土壤多环芳烃(PAHs)的含量、来源与污染风险评价[J]. 农业环境科学学报, 2019, 38(3): 609-617. |
HAN Ling, GAO Zhaoqin, BAI Junhong, et al. PAHs in surface wetland soils of the Pearl River Delta affected by urbanization: levels, sources, and toxic risks[J]. Journal of Agro-Environment Science, 2019, 38(3): 609-617. | |
10 | YANG J, SUN P, ZHANG X, et al. Source apportionment of PAHs in roadside agricultural soils of a megacity using positive matrix factorization receptor model and compound-specific carbon isotope analysis[J]. Journal of Hazardous Materials, 2021, 403: 123592. |
11 | WILD S R, JONES K C. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget[J]. Environmental Pollution, 1995, 88(1): 91-108. |
12 | MARCO-URREA E, GARCÍA-ROMERA I, ARANDA E. Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons[J]. New Biotechnology, 2015, 32(6): 620-628. |
13 | KUPPUSAMY S, THAVAMANI P, VENKATESWARLU K, et al. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions[J]. Chemosphere, 2017, 168: 944-968. |
14 | WANG Y, NIE M Q, DIWU Z J, et al. Toxicity evaluation of the metabolites derived from the degradation of phenanthrene by one of a soil ubiquitous PAHs-degrading strain Rhodococcus qingshengii FF[J]. Journal of Hazardous Materials, 2021, 415: 125657. |
15 | 申国兰, 李利, 陈莎. 微生物降解石油源多环芳香烃的研究进展[J]. 土壤, 2018, 50(1): 16-27. |
SHEN Guolan, LI Li, CHEN Sha, et al. Microbial degradation of polycyclic aromatic hydrocarbons from crude oils: a review[J]. Soils, 2018, 50(1): 16-27. | |
16 | WU P, WANG Y S. Fluorene degradation by Rhodococcus sp. A2-3 isolated from hydrocarbon contaminated sediment of the Pearl River estuary, China[J]. Ecotoxicology, 2021, 30(5): 929-935. |
17 | WAIGI M G, KANG F X, GOIKAVI C, et al. Phenanthrene biodegradation by sphingomonads and its application in the contaminated soils and sediments: a review[J]. International Biodeterioration & Biodegradation, 2015, 104: 333-349. |
18 | SONG X H, XU Y, LI G M, et al. Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons[J]. Marine Pollution Bulletin, 2011, 62(10): 2122-2128. |
19 | JIANG R H, LI Y, WANG H Q, et al. A study on the degradation efficiency of fluoranthene and the transmembrane protein mechanism of Rhodococcus sp. BAP-1 based on iTRAQ[J]. Science of the Total Environment, 2020, 737: 140208. |
20 | KATHI S, KHAN A B. Enrichment, isolation and identification of polycyclic aromatic hydrocarbon degrading Rhodococcus ruber from sediments[J]. International Journal of Scientific and Research Publications, 2013, 3(2): 1-7. |
21 | MIAO L L, QU J, LIU Z P. Hydroxylation at multiple positions initiated the biodegradation of indeno[1,2,3-cd]p y rene in Rhodococcus aetherivorans IcdP1[J]. Frontiers in Microbiology, 2020, 11: 568381. |
22 | TIRKEY S R, RAM S, MISHRA S. Naphthalene degradation studies using Pseudomonas sp. strain SA3 from Alang-Sosiya ship breaking yard, Gujarat[J]. Heliyon, 2021, 7(3): e06334. |
23 | SWATI, KUMARI M, GHOSH P, et al. Evaluation of a biosurfactant producing bacterial strain Pseudomonas sp. ISTPY2 for efficient pyrene degradation and landfill soil bioremediation through soil microcosm and proteomic studies[J]. Bioresource Technology Reports, 2020, 12: 100607. |
24 | LI J, CHEN W X, ZHOU W, et al. Synergistic degradation of pyrene by Pseudomonas aeruginosa PA06 and Achromobacter sp. AC15 with sodium citrate as the co-metabolic carbon source[J]. Ecotoxicology, 2020: 1-12. |
25 | MAWAD A M M, ABDEL-MAGEED W S, HESHAM A E. Quantification of naphthalene dioxygenase (NahAC) and catechol dioxygenase (C23O) catabolic genes produced by phenanthrene-degrading Pseudomonas fluorescens AH-40[J]. Current Genomics, 2020, 21(2): 111-118. |
26 | NWINYI O C, AJAYI O O, AMUND O O. Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas [J]. Brazilian Journal of Microbiology, 2016, 47(3): 551-562. |
27 | KAFILZADEH F, POUR F H. Degradation of naphthalene, phenanthrene and pyrene by Pseudomonas sp. and Corynebacterium sp. in the landfills[J]. International Journal of Biosciences, 2012, 2(9): 77-84. |
28 | MOHD-KAMIL N A F, ALIAS S, OTHMAN N, et al. Degradation of phenanthrene by corynebacterium urealyticum in liquid culture and sand slurry[J]. Malaysian Journal of Soil Science, 2013, 17: 111-126. |
29 | GURAV R, LYU H H, MA J L, et al. Degradation of n-alkanes and PAHs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes[J]. Environmental Science and Pollution Research, 2017, 24(12): 11392-11403. |
30 | KAWO A H, BACHA H Y. Crude oil degradation by Bacillus and Micrococcus species isolated from soil compost in Kano, Nigeria[J]. Bayero Journal of Pure and Applied Sciences, 2016, 9(1): 108. |
31 | A. K H, C. P K. Degradation of low molecular weight polycyclic aromatic hydrocarbons by microorganisms isolated from contaminated soil[J]. International Journal OF Environmental Sciences, 2016, 6: 472-482. |
32 | DIB J R, ANGELOV A, LIEBL W, et al. Complete genome sequence of the linear plasmid pJD12 hosted by Micrococcus sp. D12, isolated from a high-altitude volcanic lake in Argentina[J]. Genome Announcements, 2015, 3(3): e00675. |
33 | SUN L, ZHU G H, LIAO X Y, et al. Interactions between Pteris vittata L. genotypes and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) in arsenic uptake and PAH-dissipation[J]. Environmental Pollution, 2017, 230: 862-870. |
34 | YALAOUI-GUELLAL D, FELLA-TEMZI S, DJAFRI-DIB S, et al. The petroleum-degrading bacteria Alcaligenes aquatilis strain YGD 2906 as a potential source of lipopeptide biosurfactant[J]. Fuel, 2021, 285: 119112. |
35 | SINGHA L P, PANDEY P. Rhizobacterial community of Jatropha curcas associated with pyrene biodegradation by consortium of PAH-degrading bacteria[J]. Applied Soil Ecology, 2020, 155: 103685. |
36 | MUANGCHINDA C, PANSRI R, WONGWONGSEE W, et al. Assessment of polycyclic aromatic hydrocarbon biodegradation potential in mangrove sediment from Don Hoi Lot, Samut Songkram Province, Thailand[J]. Journal of Applied Microbiology, 2013, 114(5): 1311-1324. |
37 | JOHN R C, ESSIEN J P, AKPAN S B, et al. Polycyclic aromatic hydrocarbon-degrading bacteria from aviation fuel spill site at ibeno, Nigeria[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88(6): 1014-1019. |
38 | SUN S S, WANG H Z, CHEN Y Z, et al. Salicylate and phthalate pathways contributed differently on phenanthrene and pyrene degradations in Mycobacterium sp. WY10[J]. Journal of Hazardous Materials, 2019, 364: 509-518. |
39 | GUO C L, DANG Z, WONG Y, et al. Biodegradation ability and dioxgenase genes of PAH-degrading Sphingomonas and Mycobacterium strains isolated from mangrove sediments[J]. International Biodeterioration & Biodegradation, 2010, 64(6): 419-426. |
40 | OHTSUBO Y, NONOYAMA S, OGAWA N, et al. Complete genome sequence of Burkholderia caribensis Bcrs1W (NBRC110739), a strain co-residing with phenanthrene degrader Mycobacterium sp. EPa45 [J]. Journal of Biotechnology, 2016, 228: 67-68. |
41 | SEO J S, KEUM Y S, LI Q X. Mycobacterium aromativorans JS19b1T degrades phenanthrene through C-1, 2, C-3, 4 and C-9, 10 dioxygenation pathways[J]. International Biodeterioration & Biodegradation, 2012, 70: 96-103. |
42 | YUAN K, XIE X Q, WANG X W, et al. Transcriptional response of Mycobacterium sp. strain A1-PYR to multiple polycyclic aromatic hydrocarbon contaminations[J]. Environmental Pollution, 2018, 243: 824-832. |
43 | ZHONG J N, LUO L J, CHEN B W, et al. Degradation pathways of 1-methylphenanthrene in bacterial Sphingobium sp. MP9-4 isolated from petroleum-contaminated soil[J]. Marine Pollution Bulletin, 2017, 114(2): 926-933. |
44 | FU B, LI Q X, XU T, et al. Sphingobium sp. FB3 degrades a mixture of polycyclic aromatic hydrocarbons[J]. International Biodeterioration & Biodegradation, 2014, 87: 44-51. |
45 | CUNLIFFE M, KERTESZ M A. Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils[J]. Environmental Pollution, 2006, 144(1): 228-237. |
46 | PINYAKONG O, HABE H, KOUZUMA A, et al. Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingobium sp. strain A4[J]. FEMS Microbiology Letters, 2004, 238(2): 297-305. |
47 | MAEDA A H, NISHI S, HATADA Y, et al. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK 22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry[J]. Microbial Biotechnology, 2014, 7(2): 114-129. |
48 | RODRIGUES E M, VIDIGAL P M P, PYLRO V S, et al. Draft genome of Nocardia farcinica TRH1, a linear and polycyclic aromatic hydrocarbon-degrading bacterium isolated from the Coast of Trindade Island, Brazil[J]. Brazilian Journal of Microbiology, 2017, 48(3): 391-392. |
49 | ZEINALI M, VOSSOUGHI M, ARDESTANI S K. Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism[J]. Chemosphere, 2008, 72(6): 905-909. |
50 | GU H P, YAN K, YOU Q, et al. Soil indigenous microorganisms weaken the synergy of Massilia sp. WF1 and Phanerochaete chrysosporium in phenanthrene biodegradation[J]. Science of the Total Environment, 2021, 781: 146655. |
51 | TAHA M, SHAHSAVARI E, ABURTO-MEDINA A, et al. Bioremediation of biosolids with Phanerochaete chrysosporium culture filtrates enhances the degradation of polycyclic aromatic hydrocarbons (PAHs)[J]. Applied Soil Ecology, 2018, 124: 163-170. |
52 | DING J, CONG J, ZHOU J, et al. Polycyclic aromatic hydrocarbon biodegradation and extracellular enzyme secretion in agitated and stationary cultures of Phanerochaete chrysosporium [J]. Journal of Environmental Sciences, 2008, 20(1): 88-93. |
53 | BOGAN B W, LAMAR R T. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes[J]. Appl Environ Microbiol, 1996, 62(5): 1597-1603. |
54 | HADIBARATA T, KRISTANTI R A. Potential of a white-rot fungus Pleurotus eryngii F032 for degradation and transformation of fluorene[J]. Fungal Biology, 2014, 118(2): 222-227. |
55 | WIRASNITA R, HADIBARATA T. Potential of the white-rot fungus pleurotus pulmonarius F043 for degradation and transformation of fluoranthene[J]. Pedosphere, 2016, 26(1): 49-54. |
56 | NIKIFOROVA S V, POZDNYAKOVA N N, TURKOVSKAYA O V. Emulsifying agent production during PAHs degradation by the white rot fungus pleurotus ostreatus D1[J]. Current Microbiology, 2009, 58(6): 554-558. |
57 | POLCARO C M, BRANCALEONI E, DONATI E, et al. Fungal bioremediation of creosote-treated wood: a laboratory scale study on creosote components degradation by pleurotus ostreatus mycelium[J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81(2): 180-184. |
58 | RATHANKUMAR A K, SAIKIA K, RAMACHANDRAN K, et al. Effect of soil organic matter (SOM) on the degradation of polycyclic aromatic hydrocarbons using Pleurotus dryinus IBB 903: a microcosm study[J]. Journal of Environmental Management, 2020, 260: 110153. |
59 | JOHANNES C, MAJCHERCZYK A, HÜTTERMANN A. Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds[J]. Applied Microbiology and Biotechnology, 1996, 46(3): 313-317. |
60 | HAN M J, CHOI H T, SONG H G. Degradation of phenanthrene by Trametes versicolor and its laccase[J]. Journal of Microbiology, 2004, 42(2): 94-98. |
61 | 甄静, 李冠杰, 杜志敏, 等. 菌株Trametes hirsuta zlh237发酵液对污染土壤中多环芳烃的降解及群落结构分析[J]. 南方农业学报, 2020, 51(1): 72-79. |
ZHEN Jing, LI Guanjie, DU Zhimin, et al. Biodegradation and community structure analysis of polycyclic aromatic hydrocarbon(PAH)in contaminated soil by Trametes hirsuta zlh237 fermentation liquid[J]. Journal of Southern Agriculture, 2020, 51(1): 72-79. | |
62 | WULANDARI R, LOTRAKUL P, PUNNAPAYAK H, et al. Toxicity evaluation and biodegradation of phenanthrene by laccase from Trametes polyzona PBURU 12[J]. 3 Biotech, 2021, 11(1): 1-11. |
63 | KOSCHORRECK K, RICHTER S M, SWIERCZEK A, et al. Comparative characterization of four laccases from Trametes versicolor concerning phenolic C—C coupling and oxidation of PAHs[J]. Archives of Biochemistry and Biophysics, 2008, 474(1): 213-219. |
64 | ZHOU H, LI X L, HU B X, et al. Assembly of fungal mycelium-carbon nanotube composites and their application in pyrene removal[J]. Journal of Hazardous Materials, 2021, 415: 125743. |
65 | ZANG S Y, LI P J, YU X C, et al. Degradation of metabolites of benzo[a]pyrene by coupling Penicillium chrysogenum with KMnO4 [J]. Journal of Environmental Sciences, 2007, 19(2): 238-243. |
66 | ARANDA E, GODOY P, REINA R, et al. Isolation of Ascomycota fungi with capability to transform PAHs: insights into the biodegradation mechanisms of Penicillium oxalicum [J]. International Biodeterioration & Biodegradation, 2017, 122: 141-150. |
67 | MAHAJAN M, MANEK D, VORA N, et al. Fungi with high ability to crunch multiple polycyclic aromatic hydrocarbons (PAHs) from the pelagic sediments of Gulfs of Gujarat[J]. Marine Pollution Bulletin, 2021, 167: 112293. |
68 | JOVÉ P, OLIVELLA M À, CAMARERO S, et al. Fungal biodegradation of anthracene-polluted cork: a comparative study[J]. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances & Environmental Engineering, 2016, 51(1): 70-77. |
69 | TENG C, WU S M, GONG G Y. Bio-removal of phenanthrene, 9-fluorenone and anthracene-9, 10-dione by laccase from Aspergillus Niger in waste cooking oils[J]. Food Control, 2019, 105: 219-225. |
70 | DELL'ANNO A, BEOLCHINI F, CORINALDESI C, et al. Assessing the efficiency and eco-sustainability of bioremediation strategies for the reclamation of highly contaminated marine sediments[J]. Marine Environmental Research, 2020, 162: 105101. |
71 | LISOWSKA K, PAŁECZ B, DŁUGOŃSKI J. Detoxification of phenanthrene by C. elegans evaluated by calorimetry[J]. Thermochimica Acta, 2005, 430(1/2): 43-46. |
72 | CUTRIGHT T J. Polycyclic aromatic hydrocarbon biodegradation and kinetics using Cunninghamella echinulata var. elegans [J]. International Biodeterioration & Biodegradation, 1995, 35(4): 397-408. |
73 | POTHULURI J V, FREEMAN J P, EVANS F E, et al. Fungal metabolism of acenaphthene by Cunninghamella elegans [J]. Applied and Environmental Microbiology, 1992, 58(11): 3654-3659. |
74 | NARRO M L, CERNIGLIA C E, BAALEN C VAN, et al. Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6[J]. Applied and Environmental Microbiology, 1992, 58(4): 1351-1359. |
75 | CERNIGLIA C E, GIBSON D T, BAALEN C V. Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6[J]. Biochemical and Biophysical Research Communications, 1979, 88(1): 50-58. |
76 | ABED R M M, KÖSTER J. The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds[J]. International Biodeterioration & Biodegradation, 2005, 55(1): 29-37. |
77 | GARCÍA DE LLASERA M P, LEÓN SANTIAGO M, LOERA FLORES E J, et al. Mini-bioreactors with immobilized microalgae for the removal of benzo(a)anthracene and benzo(a)pyrene from water[J]. Ecological Engineering, 2018, 121: 89-98. |
78 | LUO L J, XIAO Z Y, ZHOU X Y, et al. Quantum chemical calculation to elucidate the biodegradation pathway of methylphenanthrene by green microalgae[J]. Water Research, 2020, 173: 115598. |
79 | SAFONOVA E, KVITKO K, KUSCHK P, et al. Biodegradation of phenanthrene by the green alga scenedesmus obliquus ES-55[J]. Engineering in Life Sciences, 2005, 5(3): 234-239. |
80 | HERNÁNDEZ BLANCO F J, GARCÍA DE LLASERA M P. Monitoring dihydrodiol polyaromatic hydrocarbon metabolites produced by the freshwater microalgae Selenastrum capricornutum [J]. Chemosphere, 2016, 158: 80-90. |
81 | CHAN S M N, LUAN T G, WONG M H, et al. Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum [J]. Environmental Toxicology and Chemistry, 2006, 25(7): 1772-1779. |
82 | LUO L J, WANG P, LIN L, et al. Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae[J]. Process Biochemistry, 2014, 49(10): 1723-1732. |
83 | 沈礼来, 丁佳锋, 钟宇驰, 等. 农田重金属阻控的微生物修复技术研究进展[J]. 广东化工, 2019, 46(22): 61-63. |
SHEN Lilai, DING Jiafeng, ZHONG Yuchi, et al. Research progress on microbial remediation technology of heavy metal control in farmland[J]. Guangdong Chemical Industry, 2019, 46(22): 61-63. | |
84 | 潘云飞, 唐正, 彭欣怡, 等. 石油烃污染土壤微生物修复技术研究现状及进展[J]. 化工进展, 2021, 40(8): 4562-4572. |
PAN Yunfei, TANG Zheng, PENG Xinyi, et al. Microbial remediation techniques for petroleum hydrocarbons contaminated soil: a review[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4562-4572. | |
85 | ZENELI A, KASTANAKI E, SIMANTIRAKI F, et al. Monitoring the biodegradation of TPH and PAHs in refinery solid waste by biostimulation and bioaugmentation[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103054. |
86 | KOSHLAF E, SHAHSAVARI E, HALEYUR N, et al. Effect of biostimulation on the distribution and composition of the microbial community of a polycyclic aromatic hydrocarbon-contaminated landfill soil during bioremediation[J]. Geoderma, 2019, 338: 216-225. |
87 | TAYLOR L T, JONES D M. Bioremediation of coal tar PAH in soils using biodiesel[J]. Chemosphere, 2001, 44(5): 1131-1136. |
88 | FERRARO A, MASSINI G, MIRITANA V M, et al. Bioaugmentation strategy to enhance polycyclic aromatic hydrocarbons anaerobic biodegradation in contaminated soils[J]. Chemosphere, 2021, 275: 130091. |
89 | WANG B B, TENG Y, XU Y F, et al. Effect of mixed soil microbiomes on pyrene removal and the response of the soil microorganisms[J]. Science of the Total Environment, 2018, 640/641: 9-17. |
90 | WANG Q, WU X G, JIANG L H, et al. Effective degradation of Di-n-butyl phthalate by reusable, magnetic Fe3O4 nanoparticle-immobilized Pseudomonas sp. W1 and its application in simulation[J]. Chemosphere, 2020, 250: 126339. |
91 | 钱林波, 元妙新, 陈宝梁. 固定化微生物技术修复PAHs污染土壤的研究进展[J]. 环境科学, 2012, 33(5): 1767-1776. |
QIAN Linbo, YUAN Miaoxin, CHEN Baoliang. Research progress about bioremediation of polycyclic aromatic hydrocarbons contaminated soil with immobilized microorganism technique[J]. Environmental Science, 2012, 33(5): 1767-1776. | |
92 | WANG B, XU X Y, YAO X W, et al. Degradation of phenanthrene and fluoranthene in a slurry bioreactor using free and Ca-alginate-immobilized Sphingomonas pseudosanguinis and Pseudomonas stutzeri bacteria[J]. Journal of Environmental Management, 2019, 249: 109388. |
93 | 田秀梅, 王晓丽, 彭士涛, 等. 乙酸改性苎麻纤维固定化微生物的石油污染修复研究[J]. 应用化工, 2019, 48(9): 2045-2049. |
TIAN Xiumei, WANG Xiaoli, PENG Shitao, et al. Petroleum pollution remediation of acetic acid modified ramie fiber carrier immobilized microorganism[J]. Applied Chemical Industry, 2019, 48(9): 2045-2049. | |
94 | WANG X, SUN S, LU J, et al. Remediating chlorpyrifos-contaminated soil using immobilized microorganism technology[J]. Polish Journal of Environmental Studies, 2018, 28(1): 349-357. |
95 | QIAO K L, TIAN W J, BAI J, et al. Removal of high-molecular-weight polycyclic aromatic hydrocarbons by a microbial consortium immobilized in magnetic floating biochar gel beads[J]. Marine Pollution Bulletin, 2020, 159: 111489. |
96 | DUAN L C, NAIDU R, THAVAMANI P, et al. Managing long-term polycyclic aromatic hydrocarbon contaminated soils: a risk-based approach[J]. Environmental Science and Pollution Research, 2015, 22(12): 8927-8941. |
97 | 梁雪涛, 苏俊杰, 王震, 等. 两株菲降解菌的降解特性及动力学[J]. 净水技术, 2020, 39(S2): 40-48. |
LIANG Xuetao, SU Junjie, WANG Zhen, et al. Degradation characteristics and kinetics of two phenanthrene-degrading bacteria[J]. Water Purification Technology, 2020, 39(S2): 40-48. | |
98 | 袁林杰. 石油源多环芳烃降解菌的筛选及其降解途径的初步研究[D]. 桂林: 桂林理工大学, 2020. |
YUAN Linjie. The isolation of polycyclic aromatic hydrocarbons degrading bacteria and the study on polycyclic aromatic hydrocarbons degradation pathways[D]. Guilin: Guilin University of Technology, 2020. | |
99 | BOUCHEZ M, BLANCHET D, VANDECASTEELE J P. Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism[J]. Applied Microbiology and Biotechnology, 1995, 43(1): 156-164. |
100 | 刘帅, 刘欢, 魏海峰, 等. 4种多环芳烃对虾夷扇贝(Patinopecten yessoensis)幼体的急性毒性研究[J]. 生态毒理学报, 2020, 15(5): 352-360. |
LIU Shuai, LIU Huan, WEI Haifeng, et al. Acute toxicity of four PAHs to larva of Patinopecten yessoensis [J]. Asian Journal of Ecotoxicology, 2020, 15(5): 352-360. | |
101 | PINELLI D, FAVA F, NOCENTINI M, et al. Bioremediation of a polycyclic aromatic hydrocarbon-contaminated soil by using different aerobic batch bioreactor systems[J]. Journal of Soil Contamination, 1997, 6(3): 243-256. |
102 | KOTTERMAN M J J, HEESSELS E, JONG E, et al. The physiology of anthracene biodegradation by the white-rot fungus Bjerkandera sp. strain BOS55[J]. Applied Microbiology and Biotechnology, 1994, 42(1): 179-186. |
103 | 郭光, 田芳, 丁克强, 等. 土著B[a]P降解菌群的富集及最佳降解条件研究[J]. 农业环境科学学报, 2021, 40(1): 123-128. |
GUO Guang, TIAN Fang, DING Keqiang, et al. Enrichment and degradation characteristics of an indigenous benzo[a]pyrene-degrading bacterial consortium[J]. Journal of Agro-Environment Science, 2021, 40(1): 123-128. | |
104 | 黄秀秀, 左宇环, 李腾飞, 等. 外加碳源及固定化对荧蒽降解菌降解性能的强化作用[J]. 水生态学杂志, 2020, 41(3): 107-114. |
HUANG Xiuxiu, ZUO Yuhuan, LI Tengfei, et al. Increasing the effectiveness of a fluoranthene-degrading microorganism by immobilization and adding a carbon source[J]. Journal of Hydroecology, 2020, 41(3): 107-114. | |
105 | 罗俊鹏. 多环芳烃降解菌的筛选、降解特性及其与化学氧化联合应用研究[D]. 南昌: 南昌大学, 2019. |
LUO Junpeng. Isolation, degradation characteristics of PAHs-degrading bacteria and its application in combination with chemical oxidation[D]. Nanchang: Nanchang University, 2019. | |
106 | 曾秋玲. 石油烃降解菌的筛选及降解特性研究[D]. 大连: 大连海事大学, 2020. |
ZENG Qiuling. Screening and degradation characteristics of petroleum hydrocarbon degrading bacteria[D]. Dalian: Dalian Maritime University, 2020. | |
107 | SHEN Y, SHENG Y, LI J F, et al. The role of temperature in phenanthrene transfer and accumulation in crop leaves[J]. Environmental Pollution, 2020, 258: 113827. |
108 | 王仁女. 一株菲降解菌CFP312筛选及其增溶生物降解研究[D]. 赣州: 江西理工大学, 2020. |
WANG Rennv. Screening of phenanthrene-degrading strain CFP312 and its solubilization and biodegradation[D]. Ganzhou: Jiangxi University of Science and Technology, 2020. | |
109 | YAGI J M, SIMS D, BRETTIN T, et al. The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer[J]. Environmental Microbiology, 2009, 11(9): 2253-2270. |
110 | DING G C, HEUER H, ZÜHLKE S, et al. Soil type-dependent responses to phenanthrene as revealed by determining the diversity and abundance of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes by using a novel PCR detection system[J]. Applied and Environmental Microbiology, 2010, 76(14): 4765-4771. |
111 | THOMAS F, CÉBRON A. Short-term rhizosphere effect on available carbon sources, phenanthrene degradation, and active microbiome in an aged-contaminated industrial soil[J]. Frontiers in Microbiology, 2016, 7: 92. |
112 | NÍ CHADHAIN S M, NORMAN R S, PESCE K V, et al. Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation[J]. Applied and Environmental Microbiology, 2006, 72(6): 4078-4087. |
113 | CÉBRON A, NORINI M P, BEGUIRISTAIN T, et al. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples[J]. Journal of Microbiological Methods, 2008, 73(2): 148-159. |
114 | CERNIGLIA C E. Biodegradation of polycyclic aromatic hydrocarbons[J]. Current Opinion in Biotechnology, 1993, 4(3): 331-338. |
115 | ROJO-NIETO E, PERALES-VARGAS-MACHUCA J A. Microbial degradation of PAHs: organisms and environmental compartments[M]//Microbial degradation of xenobiotics. Berlin: Springer. 2012: 263-290. |
[1] | YANG Jing, LI Bo, LI Wenjun, LIU Xiaona, TANG Liuyuan, LIU Yue, QIAN Tianwei. Degradation of naphthalene by degrading bacteria isolated from coking contaminated sites [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4351-4361. |
[2] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
[3] | LIU Baicheng, LI Fayun, ZHAO Qihui, LIN Meixia. Research progress on remediation of polycyclic aromatic hydrocarbons contaminated soil by Gramineae plants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3736-3748. |
[4] | PAN Yunfei, TANG Zheng, PENG Xinyi, GAO Pin. Microbial remediation techniques for petroleum hydrocarbons contaminated soil: a review [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4562-4572. |
[5] | Daocheng LIU, Jiuzhan WANG, Jieying JING, Zhifen YANG, Jie FENG, Wenying LI. Research progress on the catalysts for saturated hydrogenation of polycyclic aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 835-844. |
[6] | WANG Wangyang, LIU Cong, YUAN Pei. Advances on the removal of polycyclic aromatic hydrocarbons in environment by adsorption [J]. Chemical Industry and Engineering Progree, 2017, 36(01): 355-363. |
[7] | YU Hongyan,XU Feng,CHEN Hongyun,YANG Weiqun,YANG Zhenzhen. Modification of humic acid and its washing effect of PAHs in soil [J]. Chemical Industry and Engineering Progree, 2013, 32(03): 697-701. |
[8] | XU Junqiang,GUO Fang,QUAN Xuejun,ZHAO Qinghua,CHU Wei. Degradation of heterocyclic compounds and polycyclic aromatic hydrocarbons in coking wastewater [J]. Chemical Industry and Engineering Progree, 2008, 27(7): 973-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |