Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2301-2310.DOI: 10.16085/j.issn.1000-6613.2021-1123
• Chemical processes and equipment • Previous Articles Next Articles
ZOU Pengcheng(), JIN Guangyuan(), LI Zhenfeng, SONG Chunfang, HAN Taibai, ZHU Yulian
Received:
2021-05-27
Revised:
2021-09-06
Online:
2022-05-24
Published:
2022-05-05
Contact:
JIN Guangyuan
邹鹏程(), 金光远(), 李臻峰, 宋春芳, 韩太柏, 祝玉莲
通讯作者:
金光远
作者简介:
邹鹏程(1996—),男,硕士研究生,研究方向为微波加热生物柴油的仿真与实验。E-mail:基金资助:
CLC Number:
ZOU Pengcheng, JIN Guangyuan, LI Zhenfeng, SONG Chunfang, HAN Taibai, ZHU Yulian. Analysis of multi-physical field characteristics in a microwave reactor with a mode stirrer[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2301-2310.
邹鹏程, 金光远, 李臻峰, 宋春芳, 韩太柏, 祝玉莲. 一种具有模式搅拌的微波反应釜内多物理场特性分析[J]. 化工进展, 2022, 41(5): 2301-2310.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1123
腔体高度H0/mm | 底部高度c0/mm | 反应釜直径T/mm | 波导高度h0/mm | 夹层厚度 d/mm | 物料高度 /mm |
---|---|---|---|---|---|
390 | 60 | 260 | 344 | 20 | 240 |
腔体高度H0/mm | 底部高度c0/mm | 反应釜直径T/mm | 波导高度h0/mm | 夹层厚度 d/mm | 物料高度 /mm |
---|---|---|---|---|---|
390 | 60 | 260 | 344 | 20 | 240 |
密度 /kg·m-3 | 动力 黏度/Pa·s | 相对 磁导率 | 热导率 /W·m-1·K-1 | 恒压热容 /J·kg-1·K-1 | 比热率 | 相对 介电常数 | 电导率 /S·m-1 |
---|---|---|---|---|---|---|---|
965 | 0.065 | 1 | 0.15 | 3000 | 1 | 2.73- 0.13j[ | 0 |
密度 /kg·m-3 | 动力 黏度/Pa·s | 相对 磁导率 | 热导率 /W·m-1·K-1 | 恒压热容 /J·kg-1·K-1 | 比热率 | 相对 介电常数 | 电导率 /S·m-1 |
---|---|---|---|---|---|---|---|
965 | 0.065 | 1 | 0.15 | 3000 | 1 | 2.73- 0.13j[ | 0 |
试验号 | A (搅拌器长度λB) | B (搅拌器高度λH) | C (搅拌转速N)/r·min-1 | Y1(COV) | Y2 (平均温度)/℃ |
---|---|---|---|---|---|
1 | 0.31 | 0.06 | 18 | 0.164 | 21.890 |
2 | 0.46 | 0.06 | 18 | 0.196 | 22.005 |
3 | 0.31 | 0.32 | 18 | 0.187 | 21.421 |
4 | 0.46 | 0.32 | 18 | 0.146 | 21.401 |
5 | 0.31 | 0.19 | 6 | 0.074 | 20.665 |
6 | 0.46 | 0.19 | 6 | 0.064 | 20.660 |
7 | 0.31 | 0.19 | 30 | 0.121 | 22.026 |
8 | 0.46 | 0.19 | 30 | 0.117 | 21.761 |
9 | 0.385 | 0.06 | 6 | 0.243 | 20.955 |
10 | 0.385 | 0.32 | 6 | 0.185 | 20.733 |
11 | 0.385 | 0.06 | 30 | 0.252 | 22.791 |
12 | 0.385 | 0.32 | 30 | 0.140 | 21.917 |
13 | 0.385 | 0.19 | 18 | 0.126 | 21.290 |
14 | 0.385 | 0.19 | 18 | 0.126 | 21.290 |
15 | 0.385 | 0.19 | 18 | 0.126 | 21.290 |
16 | 0.385 | 0.19 | 18 | 0.126 | 21.290 |
17 | 0.385 | 0.19 | 18 | 0.126 | 21.290 |
试验号 | A (搅拌器长度λB) | B (搅拌器高度λH) | C (搅拌转速N)/r·min-1 | Y1(COV) | Y2 (平均温度)/℃ |
---|---|---|---|---|---|
1 | 0.31 | 0.06 | 18 | 0.164 | 21.890 |
2 | 0.46 | 0.06 | 18 | 0.196 | 22.005 |
3 | 0.31 | 0.32 | 18 | 0.187 | 21.421 |
4 | 0.46 | 0.32 | 18 | 0.146 | 21.401 |
5 | 0.31 | 0.19 | 6 | 0.074 | 20.665 |
6 | 0.46 | 0.19 | 6 | 0.064 | 20.660 |
7 | 0.31 | 0.19 | 30 | 0.121 | 22.026 |
8 | 0.46 | 0.19 | 30 | 0.117 | 21.761 |
9 | 0.385 | 0.06 | 6 | 0.243 | 20.955 |
10 | 0.385 | 0.32 | 6 | 0.185 | 20.733 |
11 | 0.385 | 0.06 | 30 | 0.252 | 22.791 |
12 | 0.385 | 0.32 | 30 | 0.140 | 21.917 |
13 | 0.385 | 0.19 | 18 | 0.126 | 21.290 |
14 | 0.385 | 0.19 | 18 | 0.126 | 21.290 |
15 | 0.385 | 0.19 | 18 | 0.126 | 21.290 |
16 | 0.385 | 0.19 | 18 | 0.126 | 21.290 |
17 | 0.385 | 0.19 | 18 | 0.126 | 21.290 |
1 | 蒋波, 张晓东, 孙立, 等. 微波促进生物柴油制备的研究进展[J]. 化工进展, 2010, 29(11): 2057-2065. |
JIANG Bo, ZHANG Xiaodong, SUN Li, et al. Advances in micowave promoted biodiesel synthesis[J]. Chemical Industry and Engineering Progress, 2010, 29(11): 2057-2065. | |
2 | PARANGI T, MISHRA M K. Solid acid catalysts for biodiesel production[J]. Comments on Inorganic Chemistry, 2020, 40(4): 176-216. |
3 | ADAM D. Microwave chemistry: out of the kitchen[J]. Nature, 2003, 421(6923): 571-572. |
4 | KHEDRI B, MOSTAFAEI M, ARDEBILI S M S. A review on microwave-assisted biodiesel production[J]. Energy Sources A: Recovery Util. Environ. Eff., 2019, 41(19): 2377-2395. |
5 | VASUDEV H, SINGH G, BANSAL A, et al. Microwave heating and its applications in surface engineering: a review[J]. Materials Research Express, 2019, 6(10): 102001. |
6 | KELEN A, RESS S, NAGY T, et al. “3D layered thermography” method to map the temperature distribution of a free flowing bulk in case of microwave drying[J]. International Journal of Heat and Mass Transfer, 2006, 49(5/6): 1015-1021. |
7 | LIU S X, FUKUOKA M, SAKAI N. A finite element model for simulating temperature distributions in rotating food during microwave heating[J]. Journal of Food Engineering, 2013, 115(1): 49-62. |
8 | ZHOU J, YANG X Q, CHU Y, et al. A novel algorithm approach for rapid simulated microwave heating of food moving on a conveyor belt[J]. Journal of Food Engineering, 2020, 282: 110029. |
9 | ZHU H C, HE J B, HONG T, et al. A rotary radiation structure for microwave heating uniformity improvement[J]. Applied Thermal Engineering, 2018, 141: 648-658. |
10 | PITCHAI K, CHEN J J, BIRLA S, et al. A microwave heat transfer model for a rotating multi-component meal in a domestic oven: development and validation[J]. Journal of Food Engineering, 2014, 128: 60-71. |
11 | YE J H, HONG T, WU Y Y, et al. Model stirrer based on a multi-material turntable for microwave processing materials[J]. Materials, 2017, 10(2): 95. |
12 | YE J H, LAN J Q, XIA Y, et al. An approach for simulating the microwave heating process with a slow- rotating sample and a fast-rotating mode stirrer[J]. International Journal of Heat and Mass Transfer, 2019, 140: 440-452. |
13 | MENG Q, LAN J Q, HONG T, et al. Effect of the rotating metal patch on microwave heating uniformity[J]. Journal of Microwave Power and Electromagnetic Energy, 2018, 52(2): 94-108. |
14 | ZHU H C, YE J H, GULATI T, et al. Dynamic analysis of continuous-flow microwave reactor with a screw propeller[J]. Applied Thermal Engineering, 2017, 123: 1456-1461. |
15 | 聂国宇, 金光远, 吴雁泽, 等. 一种带夹层釜式微波反应器加热效果模拟分析[J]. 化学工业与工程, 2020, 37(4): 49-57. |
NIE G Y, JIN G Y, WU Y Z, et al. Simulation analysis of heating effect of a microwave reactor with interlayer tank[J]. Chemical Industry and Engineering, 2020, 37(4): 49-57. | |
16 | ZHOU J, YANG X Q, YE J H, et al. Arbitrary Lagrangian-Eulerian method for computation of rotating target during microwave heating[J]. International Journal of Heat and Mass Transfer, 2019, 134: 271-285. |
17 | HONG Y D, LIN B Q, LI H, et al. Three-dimensional simulation of microwave heating coal sample with varying parameters[J]. Applied Thermal Engineering, 2016, 93: 1145-1154. |
18 | GOLDBLITH S A, WANG D I. Effect of microwaves on Escherichia coli and Bacillus subtilis [J]. Applied Microbiology, 1967, 15(6): 1371-1375. |
19 | HUANG K M, LIAO Y H. Transient power loss density of electromagnetic pulse in debye media[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(1): 135-140. |
20 | PANDIT R B, PRASAD S. Finite element analysis of microwave heating of potato-transient temperature profiles[J]. Journal of Food Engineering, 2003, 60(2): 193-202. |
21 | PITCHAI K, BIRLA S L, SUBBIAH J, et al. Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens[J]. Journal of Food Engineering, 2012, 112(1/2): 100-111. |
22 | 朱铧丞, 兰俊卿, 吴丽, 等. 微波辅助生物柴油生产的一体化计算[J]. 四川大学学报(自然科学版), 2015, 52(6): 1285-1292. |
ZHU H C, LAN J Q, WU L, et al. Integrative calculation for microwave process of biodiesel production[J]. Journal of Sichuan University (Natural Science Edition), 2015, 52(6): 1285-1292. | |
23 | HAROUCHE I P F, SHAFAI C. Simulation of shaped comb drive as a stepped actuator for microtweezers application[J]. Sensors and Actuators A: Physical, 2005, 123/124: 540-546. |
24 | 宋睿, 金光远, 崔政伟, 等. 酯交换反应体系混合物料的介电特性[J]. 化工学报, 2018, 69(8): 3670-3677. |
SONG R, JIN G Y, CUI Z W, et al. Dielectric properties of mixed materials in transesterification reaction system[J]. CIESC Journal, 2018, 69(8): 3670-3677. | |
25 | ZHANG M, JIA X, TANG Z, et al. A fast and accurate method for computing the microwave heating of moving objects[J]. Applied Sciences, 2020, 10(8): 2985. |
26 | YE J H, XIA Y, YI Q Y, et al. Multiphysics modeling of microwave heating of solid samples in rotary lifting motion in a rectangular multi-mode cavity[J]. Innovative Food Science & Emerging Technologies, 2021, 73: 102767. |
27 | HE J L, YANG Y, ZHU H C, et al. Microwave heating based on two rotary waveguides to improve efficiency and uniformity by gradient descent method[J]. Applied Thermal Engineering, 2020, 178: 115594. |
28 | TANG Z M, HONG T, LIAO Y H, et al. Frequency-selected method to improve microwave heating performance[J]. Applied Thermal Engineering, 2018, 131: 642-648. |
[1] | JIN Xin, LI Yushan, XIE Qingqing, WANG Mengyu, XIA Xingfan, YANG Chaohe. Progress on solketal synthesis catalyzed by porous materials [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 731-743. |
[2] | QIN Zhenfang, LIAO Rihong, MA Weifang. Research progress on absorption-microalgae fixation of low concentration CO2 and synchronous oil production in gas power plant [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 94-106. |
[3] | ZHAO Jianbing, YANG Dan, SHU Yuancao, ZHU Junbo, PU Shiping, SONG Xiaodan, LIU Shouqing, CHAI Xijuan, LI Xuemei. Preparation of Na2CO3 /CF solid base and its catalytic transesterification of rapeseed oil [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3608-3614. |
[4] | MA Xin, WANG Shuang, LI Fashe, ZHANG Yishui, JIANG Shang. Simulation and experimental research on the atomization characteristics of waste oil biodiesel [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 655-665. |
[5] | ZHU Changhui, ZHU Wenchao, LUO Jia, TIAN Baohe, SUN Jialin, ZOU Zhiyun. Recent advances in microwave-intensified transesterification for biodiesel preparation [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5145-5154. |
[6] | JI Shulan, LI Xun, WANG Fei. Immobilization of Rhizopus oryzae onto loofah sponge as a whole-cell biocatalyst to preparation of biodiesel from Comus wilsoniana fruit oil [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5381-5389. |
[7] | YUE Qianqian, GAO Lijing, XIAO Guomin, WEI Ruiping, LEI Yan. Process of the reactor and progress of biodiesel continuous production [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 81-88. |
[8] | ZOU Shuai, LI Yuqin, MA Yiran, QI Zhenhua, JIA Quanwei. Diethanolamine strengthening CO2 fixation and lipid accumulation in Coccomyxa subellipsoidea C-169 [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5222-5230. |
[9] | BAO Wenjun, LI Zifu, WANG Xuemei, GAO Ruiling, CHENG Shikun, MEN Yu. Progress of oleaginous yeast utilizing low-cost substrates to synthesize lipids [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2484-2495. |
[10] | Xinyu MENG, Jie XU, Jie WAN, Yanjun LIU, Xiaoli WANG, Jun ZHANG, Feng ZHENG, Jianfei KAN, Gongde WU. Research and industrialization progress in synthesis of glycerol carbonate [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3739-3749. |
[11] | Hailiang XING,Xunzan DONG,Benyong HAN,Shuxiang GENG,Delu NING,Ting MA,Xuya YU. Cell growth and lipid accumulation of Monoraphidium sp. QLZ-3 in walnut shell extracts with carbon dioxide [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1575-1582. |
[12] | Shuang WANG,Youhao WANG,Fashe LI,Wenchao WANG,Meng SUI. Analysis of oxidative degradation degree of biodiesel based on UV absorbance [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 506-512. |
[13] | Wen TENG, Yong CHEN, Meng SUI, Fashe LI. Effect of TEPA and [MI][C6H2(OH)3COO] compound on antioxidant property of biodiesel [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4427-4434. |
[14] | Zejian HUANG,Yiqing LUO,Xigang YUAN. Environmental impact assessment of water treatment integrated microalgae biodiesel life cycle system [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 34-41. |
[15] | YUAN Chuan, LU Houfang, LIU Changjun, JIANG Wei, LIU Yingying, LIANG Bin. Effects of water and free fatty acids on biodiesel production using DBU as catalyst [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3386-3392. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |