Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1569-1577.DOI: 10.16085/j.issn.1000-6613.2021-2213
• Chemical energy storage • Previous Articles Next Articles
Received:
2021-10-29
Revised:
2021-12-01
Online:
2022-03-28
Published:
2022-03-23
Contact:
XU Zhi
通讯作者:
徐至
作者简介:
徐至(1986—),男,教授,博士生导师,研究方向为膜制备与应用。E-mail:基金资助:
CLC Number:
XU Zhi, HUANG Kang. Research progress of porous ion conductive membranes in batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1569-1577.
徐至, 黄康. 多孔离子传导电池隔膜研究进展[J]. 化工进展, 2022, 41(3): 1569-1577.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2213
1 | DAI Liheng, HUANG Kang, XIA Yongsheng, et al. Two-dimensional material separation membranes for renewable energy purification, storage, and conversion[J]. Green Energy & Environment, 2021, 6(2): 193-211. |
2 | DAI Qing, ZHAO Ziming, SHI Mengqi, et al. Ion conductive membranes for flow batteries: design and ions transport mechanism[J]. Journal of Membrane Science, 2021, 632: 119355. |
3 | DONG Junhang, XU Zhi, YANG Shaowei, et al. Zeolite membranes for ion separations from aqueous solutions[J]. Current Opinion in Chemical Engineering, 2015, 8: 15-20. |
4 | YANG Ruidong, XU Zhi, YANG Shaowei, et al. Nonionic zeolite membrane as potential ion separator in redox-flow battery[J]. Journal of Membrane Science, 2014, 450: 12-17. |
5 | XU Zhi, MICHOS I, WANG Xuerui, et al. A zeolite ion exchange membrane for redox flow batteries[J]. Chemical Communications, 2014, 50(19): 2416. |
6 | GUO Yi, JIANG Zhongqing, YING Wen, et al. A DNA-threaded ZIF-8 membrane with high proton conductivity and low methanol permeability[J]. Advanced Materials, 2018, 30(2): 1705155. |
7 | XU Zhi, MICHOS I, CAO Zishu, et al. Proton-selective ion transport in ZSM-5 zeolite membrane[J]. The Journal of Physical Chemistry C, 2016, 120(46): 26386-26392. |
8 | HUANG Kang, WANG Bo, GUO Song, et al. Micropatterned ultrathin MOF membranes with enhanced molecular sieving property[J]. Angewandte Chemie, 2018, 130(42): 14088-1409. |
9 | QIAN Qihui, ASINGER P A, LEE M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
10 | WU Jine, DAI Qing, ZHANG Huamin, et al. A defect-free MOF composite membrane prepared via in-situ binder-controlled restrained second-growth method for energy storage device[J]. Energy Storage Materials, 2021, 35: 687-694. |
11 | LEE W, PARK D, PARK G, et al. Effect of pore adjustable hydrophilic nickel coated polyethylene membrane on the performance of aqueous naphthoquinone based redox flow batteries[J]. Chemical Engineering Journal, 2021, 408: 127320. |
12 | 李凯敏, 丁伟, 陈庆, 等. PES/Nafion复合膜的制备及其在全钒液流电池中的应用[J]. 辽宁化工, 2017, 46(6): 531-533. |
LI Kaimin, DING Wei, CHEN Qing, et al. Preparation of PES/nafion composite membrane and its application in all-vanadium redox flow batteries[J]. Liaoning Chemical Industry, 2017, 46(6):531-533. | |
13 | SHIN M, SONG W-J, SON H B, et al. Highly stretchable separator membrane for deformable energy-storage devices[J]. Advanced Energy Materials, 2018, 8(23): 1801025. |
14 | SHI Mengqi, DAI Qing, LI Fan, et al. Membranes with well-defined selective layer regulated by controlled solvent diffusion for high power density flow battery[J]. Advanced Energy Materials, 2020, 10(34): 2001382. |
15 | WU Jin’e, YUAN Chenguang, LI Tianyu, et al. Dendrite-free zinc-based battery with high areal capacity via the region-induced deposition effect of turing membrane[J]. Journal of the American Chemical Society, 2021, 143(33): 13135-13144. |
16 | CHAE I S, LUO Tao, MOON G H, et al. Ultra-high proton/vanadium selectivity for hydrophobic polymer membranes with intrinsic nanopores for redox flow battery[J]. Advanced Energy Materials, 2016, 6(16): 1600517. |
17 | CAO Li, WU Hong, CAO Yu, et al. Weakly humidity-dependent proton-conducting COF membranes[J]. Advanced Materials, 2020, 32(52): 2005565. |
18 | TAN Rui, WANG Anqi, MALPASS-EVANS R, et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage[J]. Nature Materials, 2020, 19(2): 195-202. |
19 | ZUO Peipei, LI Yuanyuan, WANG Anqi, et al. Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage[J]. Angewandte Chemie International Edition, 2020, 59(24): 9564-9573. |
20 | YANG Yi, HE Xueyi, ZHANG Penghui, et al. Combined intrinsic and extrinsic proton conduction in robust covalent organic frameworks for hydrogen fuel cell applications[J]. Angewandte Chemie International Edition, 2020, 59(9): 3678-3684. |
21 | LEE W, JUNG M, SERHIICHUK D, et al. Layered composite membranes based on porous PVDF coated with a thin, dense PBI layer for vanadium redox flow batteries[J]. Journal of Membrane Science, 2019, 591: 117333. |
22 | DAI Qing, LIU Zhiqiang, HUANG Ling, et al. Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery[J]. Nature Communications, 2020, 11: 13. |
23 | HU Jing, YUAN Chenguang, ZHI Liping, et al. In situ defect-free vertically aligned layered double hydroxide composite membrane for high areal capacity and long-cycle zinc-based flow battery[J]. Advanced Functional Materials, 2021, 31: 2102167. |
24 | ZHANG Dezhu, XIN Li, XIA Yongsheng, et al. Advanced Nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery[J]. Journal of Membrane Science, 2021, 624: 119047. |
25 | XIN Li, ZHANG Dezhu, QU Kai, et al. Zr-MOF-enabled controllable ion sieving and proton conductivity in flow battery membrane[J]. Advanced Functional Materials, 2021, 31(42): 2104629. |
26 | AHN Y, KIM D. Ultra-low vanadium ion permeable electrolyte membrane for vanadium redox flow battery by pore filling of PTFE substrate[J]. Energy Storage Materials, 2020, 31: 105-114. |
27 | MÖGELIN H, YAO G, ZHONG H, et al. Porous glass membranes for vanadium redox-flow battery application-effect of pore size on the performance[J]. Journal of Power Sources, 2018, 377: 18-25. |
28 | ZHAO Yuyue, LI Mingrun, YUAN Zhizhang, et al. Advanced charged sponge-like membrane with ultrahigh stability and selectivity for vanadium flow batteries[J]. Advanced Functional Materials, 2016, 26(2): 210-218. |
29 | LAI Yiming, WAN Lei WANG Baoguo. PVDF/graphene composite nanoporous membranes for vanadium flow batteries[J]. Membranes, 2019, 9(7): 89. |
30 | ZHOU Xinjie, XUE Rui, ZHONG Yuguang, et al. Asymmetric porous membranes with ultra-high ion selectivity for vanadium redox flow batteries[J]. Journal of Membrane Science, 2020, 595: 117614. |
31 | YUAN Zhizhang, DUAN Yinqi, ZHANG Hongzhang, et al. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries[J]. Energy & Environmental Science, 2016, 9(2): 441-447. |
32 | 青格勒图, 郭伟男, 刘平, 等. 全钒液流电池的隔膜研究与应用[J]. 电化学, 2015, 21(5): 449-454. |
QINGGE Letu, GUO Weinan, LIU Ping, et al. Development of proton conduction membranes in application of vanadium flow battery[J]. Journal of Electrochemistry, 2015, 21(5): 449-454. | |
33 | KIM R, YUK S, LEE J H, et al. Scaling the water cluster size of nafion membranes for a high performance Zn/Br redox flow battery[J]. Journal of Membrane Science, 2018, 564: 852-858. |
34 | YUAN Zhizhang, LIU Xiaoqi, XU Wenbin, et al. Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life[J]. Nature Communications, 2018, 9: 3731. |
35 | HU Jing, YUE Meng, ZHANG Huamin, et al. A boron nitride nanosheets composite membrane for a long-life zinc-based flow battery[J]. Angewandte Chemie International Edition, 2020, 59(17): 6715-6719. |
36 | MA Ting, PAN Zeng, MIAO Licheng, et al. Porphyrin-based symmetric redox-flow battery towards cold-climate energy storage[J].Angewandte Chemie International Edition, 2018, 57(12): 3158-3162. |
37 | HU Jing, TANG Xiaomin, DAI Qing, et al. Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device[J]. Nature Communications, 2021, 12: 3409. |
38 | 夏力行, 刘昊, 刘琳, 等. 有机氧化还原液流电池的研究进展[J]. 电化学, 2018, 24(5): 466-487. |
XIA Lixing, LIU Hao, LIU lin, et al. Recent progresses in organic redox flow batteries[J]. Journal of Electrochemistry, 2018, 24(5): 466-487. | |
39 | 罗惠玲, 邵诸锋, 王树博, 等. 多孔有机笼在聚丙烯腈纳米纤维表面固载及其复合质子交换膜[J]. 化工进展, 2021, 40(7): 3854-3861. |
LUO Huiling, SHAO Zhufeng, WANG Shubo, et al. Preparation and performance of CC3 immobilized PAN nanofibers and its modified Nafion hybrid proton exchange membrane[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3854-3861. | |
40 | 梁茜, 王诚, 雷一杰, 等. 金属有机框架材料在质子交换膜燃料电池中的潜在应用[J]. 化学进展, 2018, 30(11): 1770-1783. |
LIANG Xi, WANG Cheng, LEI Yijie, et al. Potential applications of metal organic framework-based materials for proton exchange membrane fuel cells[J]. Progress in Chemistry, 2018, 30(11): 1770-1783. | |
41 | GENG Kang, TANG Hongying, JU Qing, et al. Symmetric sponge-like porous polybenzimidazole membrane for high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2021, 620: 118981. |
42 | CHEN Dongju, YU Shanshan, LIU Xue, et al. Porous polybenzimidazole membranes with excellent chemical stability and ion conductivity for direct borohydride fuel cells[J]. Journal of Power Sources, 2015, 282: 323-327. |
43 | SONG Jianjun, SU Dawei, XIE Xiuqiang, et al. Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29427-29433. |
44 | HUSSAIN A, LUO Yang, LI Tianyu, et al. Stop four gaps with one bush: versatile hierarchical polybenzimidazole nanoporous membrane for highly durable Li-S battery[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 55809-55819. |
45 | XU Jie, AN Shuhao, SONG Xianyu, et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator[J]. Advanced Materials, 2021: 2105178. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[4] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[5] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[6] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[7] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[8] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[9] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[10] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[11] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[12] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[13] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[14] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[15] | WANG Jiaxin, PAN Yong, XIONG Xinyi, WAN Xiaoyue, WANG Jianchao. Reaction process and hazards of dinitrotoluene preparation by one-step catalytic nitration of toluene [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3420-3430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |