Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1399-1408.DOI: 10.16085/j.issn.1000-6613.2021-2314
• Chemical processes energy saving and emission reduction • Previous Articles Next Articles
XIANG Hongwei1,2(), YANG Yong1,2, LI Yongwang1,2
Received:
2021-11-11
Revised:
2021-12-06
Online:
2022-03-28
Published:
2022-03-23
Contact:
XIANG Hongwei
通讯作者:
相宏伟
作者简介:
相宏伟(1964—),男,博士,研究员,研究方向为煤制油催化剂及其反应工程。E-mail:基金资助:
CLC Number:
XIANG Hongwei, YANG Yong, LI Yongwang. Transformation and development of coal chemical industry under the goal of carbon neutralization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1399-1408.
相宏伟, 杨勇, 李永旺. 碳中和目标下的煤化工变革与发展[J]. 化工进展, 2022, 41(3): 1399-1408.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2314
年份 /年 | 一次能源 消费总量 /亿tce | 能源相关的CO2排放总量 /亿吨 | 煤炭 消费量 /亿tce | 煤在一次 能源消费中 占比/% | 用煤排放 的CO2量①/亿吨 |
---|---|---|---|---|---|
2020 | 49.80 | 98.94 | 28.28 | 56.80 | 73.50 |
2030 | 59 | 108~116 | 26 | 约45 | 68 |
2040 | 55 | 约86 | 19 | 约35 | 49 |
2050 | 52 | 约55 | 10 | 约20 | 26 |
2060 | 47 | 约20 | 3 | 约5 | 7 |
年份 /年 | 一次能源 消费总量 /亿tce | 能源相关的CO2排放总量 /亿吨 | 煤炭 消费量 /亿tce | 煤在一次 能源消费中 占比/% | 用煤排放 的CO2量①/亿吨 |
---|---|---|---|---|---|
2020 | 49.80 | 98.94 | 28.28 | 56.80 | 73.50 |
2030 | 59 | 108~116 | 26 | 约45 | 68 |
2040 | 55 | 约86 | 19 | 约35 | 49 |
2050 | 52 | 约55 | 10 | 约20 | 26 |
2060 | 47 | 约20 | 3 | 约5 | 7 |
项目 | 能源与化工产品 | |||||||
---|---|---|---|---|---|---|---|---|
石油 | 天然气 | 聚乙烯/聚丙烯 | 乙二醇 | 甲醇 | 合成氨 | 焦炭 | 电石 | |
产量/万吨 | 19500 | 1888① | 1970/2581 | 970 | 6357 | 4954 | 47100 | 2758 |
消费总量 /万吨 | 73600 | 3253① | 3830/3147 | 2019 | — | — | — | — |
对外依存度 /% | 73.5 | 43.1 | 48.0/20.5 | 52.3 | 产能过剩 | 产能过剩 | 产能过剩 | 产能过剩 |
项目 | 煤化工产品 | |||||||
煤制油 | 煤制天然气 | 煤制烯烃 | 煤制乙二醇 | 煤制甲醇 | 煤制合成氨 | 焦炭 | 电石 | |
产量/万吨 | 921 | 51① | 1362 | 478 | 约4500 | 3651 | 47100 | 2758 |
用途与作用 | 液体燃料、溶剂油、润滑油、费托蜡等 | 民用与工业燃气等 | 生产塑料、 日用品等 | 聚酯、 纤维等 | 精细化工、甲醇汽油、煤制烯原料等 | 生产尿素、复合肥、硝铵等 | 用于钢铁冶金等 | 生产PVC、BDO、精细化学品等 |
项目 | 能源与化工产品 | |||||||
---|---|---|---|---|---|---|---|---|
石油 | 天然气 | 聚乙烯/聚丙烯 | 乙二醇 | 甲醇 | 合成氨 | 焦炭 | 电石 | |
产量/万吨 | 19500 | 1888① | 1970/2581 | 970 | 6357 | 4954 | 47100 | 2758 |
消费总量 /万吨 | 73600 | 3253① | 3830/3147 | 2019 | — | — | — | — |
对外依存度 /% | 73.5 | 43.1 | 48.0/20.5 | 52.3 | 产能过剩 | 产能过剩 | 产能过剩 | 产能过剩 |
项目 | 煤化工产品 | |||||||
煤制油 | 煤制天然气 | 煤制烯烃 | 煤制乙二醇 | 煤制甲醇 | 煤制合成氨 | 焦炭 | 电石 | |
产量/万吨 | 921 | 51① | 1362 | 478 | 约4500 | 3651 | 47100 | 2758 |
用途与作用 | 液体燃料、溶剂油、润滑油、费托蜡等 | 民用与工业燃气等 | 生产塑料、 日用品等 | 聚酯、 纤维等 | 精细化工、甲醇汽油、煤制烯原料等 | 生产尿素、复合肥、硝铵等 | 用于钢铁冶金等 | 生产PVC、BDO、精细化学品等 |
44 | ZHUANG T T, LIANG Z Q, SEIFITOKALDANI A, et al. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols[J]. Nature Catalysis, 2018, 1: 421-428. |
45 | CAI Tao, SUN Hongbing, QIAO Jing, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. |
1 | 继往开来,开启全球应对气候变化新征程——在气候雄心峰会上的讲话[N]. 人民日报, 2020-12-13(2). |
Continuing the past and opening up a new journey in global response to climate change—A speech at the climate ambition summit[N]. People’s Daily, 2020-12-13(2). | |
2 | 索荣. 走出误区,找准碳中和的现实路径——南方科技大学创新创业学院院长刘科谈不一样的减碳观[J]. 中国石油和化工产业观察, 2021(9): 8-11. |
SUO Rong. Get out of the misunderstanding and find a realistic route for carbon neutralization[J]. China Petrochemical Industry Observer, 2021(9): 8-11. | |
3 | 丁仲礼. 中国碳中和框架路线图研究[J]. 中国工业和信息化, 2021(8): 54-61. |
DING Zhongli. Research on China’s carbon neutralization framework roadmap[J]. China Industry & Information Technology, 2021(8): 54-61. | |
4 | 苏健, 梁英波, 丁麟, 等. 碳中和目标下我国能源发展战略探讨[J]. 中国科学院院刊, 2021, 36(9): 1001-1009. |
SU Jian, LIANG Yingbo, DING Lin, et al. Research on China’s energy development strategy under carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(9): 1001-1009. | |
5 | 申岚, 丁爽. 充满挑战的中国脱碳之路[J]. 中国货币市场, 2021(6): 78-82. |
SHEN Lan, DING Shuang. Challenges for China’s decarbonization[J]. China Money, 2021(6): 78-82. | |
6 | 刘振宇,李清波. 煤化工在“碳中和”历程中不可或缺[N]. 中国科学报, 2021-08-23(3). |
46 | SCHÄPPI R, RUTZ D, DÄHLER F, et al. Drop-in fuels from sunlight and air[J]. Nature, 2022, 601(7891): 63-68. |
6 | LIU Zhenyu, LI Qingbo. The indispensability of coal chemical industry in the process of carbon Neutralization[N]. China Science Daily, 2021-08-23(3). |
7 | 谢克昌. 节能提效才是减碳第一优选[N]. 中国能源报,2021-05-17. |
XIE Kechang. Energy saving and efficiency improvement is the first priority for reducing carbon dioxide emission[N]. China Energy News, 2021-05-17. | |
8 | YANG Yong, XU Jian, LIU Zhenyu, et al. Progress in coal chemical technologies of China[J]. Reviews in Chemical Engineering, 2019, 36(1): 21-66. |
9 | 徐振刚. 中国现代煤化工近25年发展回顾·反思·展望[J]. 煤炭科学技术, 2020, 48(8): 1-25. |
XU Zhengang. Review, rethink and prospect of China’s modern coal chemical industry development in recent 25 years[J]. Coal Science and Technology, 2020, 48(8): 1-25. | |
10 | 胡迁林, 赵明. “十四五”时期现代煤化工发展思考[J]. 中国煤炭, 2021, 47(3): 2-8. |
HU Qianlin, ZHAO Ming. Thinking on the development of modern coal chemical industry during the 14th Five-Year Plan period[J]. China Coal, 2021, 47(3): 2-8. | |
11 | 唐宏青. 应该为煤化工建个绿氢示范厂[J]. 中国石油和化工产业观察, 2021(9): 70-71. |
TANG Hongqing. A green hydrogen demonstration plant should be built for coal chemical industry[J]. China Petrochemical Industry Observer, 2021(9): 70-71. | |
12 | 宝丰太阳能电解水制氢综合示范项目正式投产[J]. 石油化工应用, 2021, 40(4): 122-123. |
Baofeng hydrogen production demonstration project of solar electrolytic water put into operation[J]. Petrochemical Industry Application, 2021, 40(4): 122-123. | |
13 | 全球单厂规模最大电解水制氢项目:全部达产后年减排66万吨[EB/OL]. 2021-11-19. . |
The world’s largest electrolytic water hydrogen production project in a single plant:660000tons of carbon dioxide will be reduced annually after reaching production capacity[EB/OL]. 2021-11-19. . | |
14 | 世界上最大的光伏绿氢生产项目在新疆开工,投产后年产绿氢 2万吨[EB/OL]. 2021-11-30. . |
The world’s largest photovoltaic green hydrogen production project started in Xinjing and its annual output of green hydrogen is 20000 tons[EB/OL]. 2021-11-30. . | |
15 | 世界首座第四代技术钍基熔盐堆将在甘肃测试:耗水少,更安全[EB/OL]. 2021-09-14,. |
The world’s first thorium-based molten salt reactor of fourth generation nuclear power technology will be tested in Gansu:less water consumption and safer[EB/OL]. 2021-09-14,. | |
16 | 全球第四代核电技术首个商业化示范项目开始装料[EB/OL]. 2021-08-21 . |
The world’s first commercial demonstration project of fourth generation nuclear power technology began to load[EB/OL]. 2021-08-21, . | |
17 | 张龙强,于治民. 我国氢冶金工艺发展分析与建议[EB/OL].世界金属导报,2020-09-12. . |
ZHANG Longqiang, YU Zhimin. Analysis and suggestion on the development of hydrogen metallurgy process in China[EB/OL]. World Metals, 2020-09-12. . | |
18 | New DEGNAN T., lower CO 2 producing sources of hydrogen prompt construction of “greener” ammonia plants[J]. Focus on Catalysts, 2021, 2021(1): 1. |
19 | ZHANG Hanfei, WANG Ligang, HERLE J VAN, et al. Techno-economic comparison of green ammonia production processes[J]. Applied Energy, 2020, 259: 114135. |
20 | 生态环境部环境规划院. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)[R], |
2021-08-02. | |
Chinese Academy of Environmental Planning, Ministry of Ecology Environment of China. Annual report on carbon dioxide capture,utilization and storage in China (2021)[R], 2021-08-02. | |
21 | 邢力仁, 武正弯, 张若玉. CCUS产业发展现状与前景分析[J]. 国际石油经济, 2021, 29(8): 99-105. |
XING Liren, WU Zhengwan, ZHANG Ruoyu. Development status and prospect analysis of CCUS industry[J]. International Petroleum Economics, 2021, 29(8): 99-105. | |
22 | 王高峰, 秦积舜, 孙伟善, 等. 碳捕集、利用与封存案例分析及产业发展建议[M]. 北京: 化学工业出版社, 2020. |
WANG Gaofeng, QIN Jishun, SUN Weishan, et al. CCUS cases analysis and industrial development suggestions[M]. Beijing: Chemical Industry Press, 2020. | |
23 | 从CCS到CCUS:二氧化碳资源化利用破题[J]. 中国石油企业, 2021(6): 49-51. |
From CCS to CCUS:solving the problem of carbon dioxide resource utilization[J]. China Petroleum Enterprise, 2021(6): 49-51. | |
24 | 孙典文. 为了经济的可持续发展——神华集团成功封存二氧化碳于千米以下地层纪实[J]. 中国石油和化工, 2011(8): 11-15. |
SUN Dianwen. Shenhua Group has successfully stored carbon dioxide in kilometer stratum for the sustainable development of economy[J]. China Petroleum and Chemical Industry, 2011(8): 11-15. | |
25 | 王维波, 汤瑞佳, 江绍静, 等. 延长石油煤化工CO2捕集、利用与封存(CCUS)工程实践[J]. 非常规油气, 2021, 8(2): 1-7, 106. |
WANG Weibo, TANG Ruijia, JIANG Shaojing, et al. The engineering practice of CO2 capture, utilization and storage(CCUS) in coal chemical industry of Yanchang Petroleum[J]. Unconventional Oil & Gas, 2021, 8(2): 1-7, 106. | |
26 | 孙波, 刘书云, 雷肖宵.中国发展降碳技术展示降碳决心[EB/OL]. 2021-09-05. . |
SUN Bo, LIU Shuyun, LEI Xiaoxiao. China’s development of carbon dioxide reduction technology shows its determination to control carbon emission[EB/OL]. 2021-09-05. XAV00. | |
27 | 中石化宣布: 我国最大“碳捕”项目启动![J]. 化工时刊, 2021, 35(7): 34. |
Sinopec announced the launch of China’s largest carbon dioxide capture project[J]. Chemical Industry Times, 2021, 35(7): 34. | |
28 | 100万吨液体二氧化碳捕集利用项目签约[EB/OL]. 2021-10-18.. |
The capture and utilization project of 1 million t/a liquid carbon dioxide was launched[EB/OL]. 2021-10-18. . | |
29 | 张杰, 郭伟, 张博, 等. 空气中直接捕集CO2技术研究进展[J]. 洁净煤技术, 2021, 27(2): 57-68. |
ZHANG Jie, GUO Wei, ZHANG Bo, et al. Research progress on direct capture of CO2 from air[J]. Clean Coal Technology, 2021, 27(2): 57-68. | |
30 | 甄翔. 世界最大“捕碳机”在冰岛启用,每年可从空气中吸入4000吨二氧化碳[EB/OL]. 2021-09-10. . |
ZHEN Xiang. The world’s largest carbon capture device is put into operation in Iceland and can collect 4000 tons of carbon dioxide from air every year[EB/OL]. 2021-09-10. . | |
31 | KEITH D W, HOLMES G, ANGELO D ST, et al. A process for capturing CO2 from the atmosphere[J]. Joule, 2018, 2(8): 1573-1594. |
32 | 吕建中. 以碳排放权交易市场机制助推绿色低碳转型[J]. 世界石油工业, 2021, 28(4): 1-6. |
Jianzhong LYU. Carbon emission trading market mechanism to promote the green and low-carbon transformation[J]. World Petroleum Industry, 2021, 28(4): 1-6. | |
33 | 李仁贵, 李灿. 人工光合成太阳燃料制备途径及规模化[J]. 科技导报, 2020, 38(23): 105-112. |
LI Rengui, LI Can. Perspectives on artificial photosynthesis for solar fuels production[J]. Science & Technology Review, 2020, 38(23): 105-112. | |
34 | SHA Feng, HAN Zhe, TANG Shan, et al. Hydrogenation of carbon dioxide to methanol over non-Cu-based heterogeneous catalysts[J]. ChemSusChem, 2020, 13(23): 6160-6181. |
35 | 二氧化碳电解制合成气中试项目顺利通过现场考核[EB/OL]. 2020-11-26. . |
The pilot project of carbon dioxide electrolysis to syngas successfully passed the on-site assessment[EB/OL]. 2020-11-26. . | |
36 | 赵敏, 贾贺峰, 赵明宇, 等. 工业二氧化碳废气用于农作物增产的绿色减排途径[J]. 低温与特气, 2017, 35(4): 1-4. |
ZHAO Min, JIA Hefeng, ZHAO Mingyu, et al. Green emission reduction methods for industrial carbon dioxide emissions for crop yields[J]. Low Temperature and Specialty Gases, 2017, 35(4): 1-4. | |
37 | 李煦, 荣峻峰, 宗保宁. 微藻碳减排与生物质利用技术研究进展[J]. 石油炼制与化工, 2021, 52(10): 62-71. |
LI Xu, RONG Junfeng, ZONG Baoning. Research progress of carbon emmision reduction by microalgae and biomass utilization[J]. Petroleum Processing and Petrochemicals, 2021, 52(10): 62-71. | |
38 | 曾存, 胡以怀, 李凯, 等. 微藻碳捕捉技术的研究与发展[J]. 能源工程, 2019(5): 63-68. |
ZENG Cun, HU Yihuai, LI Kai, et al. Research and development of microalgae carbon capture technology[J]. Energy Engineering, 2019(5): 63-68. | |
39 | 李闻芝. 微藻能解二氧化碳排放之难吗[J]. 环境教育, 2014(4): 44-47. |
LI Wenzhi. Can microlgae solve the difficulty of carbon dioxide emission?[J]. Environmental Education, 2014(4): 44-47. | |
40 | Shanshan LYU, SHI Yanmei, MENG Nannan, et al. Electrosynthesis of syngas via the co-reduction of CO2 and H2O[J]. Cell Reports Physical Science, 2020, 1(11): 100237. |
41 | ZHANG Sheng, FAN Qun, XIA Rong, et al. CO2 reduction: from homogeneous to heterogeneous electrocatalysis[J]. Accounts of Chemical Research, 2020, 53(1): 255-264. |
42 | KIM D, SAKIMOTO K K, HONG D C, et al. Artificial photosynthesis for sustainable fuel and chemical production[J]. Angewandte Chemie, 2015, 54(11): 3259-3266. |
43 | SAKIMOTO K K, WONG A B, YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
[1] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[2] | LI Wenxiu, YANG Yuhang, HUANG Yan, WANG Tao, WANG Lei, FANG Mengxiang. Preparation of ultrafine calcium carbonate by CO2 mineralization using high calcium-based solid waste [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2047-2057. |
[3] | LIU Hongru, LIN Wensheng. Energy efficiency and carbon emission analysis of hydrogen transport chains based on liquid hydrogen and ammonia [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1291-1298. |
[4] | FAN Baotian, YAN Zhenrong, SU Houde, LIU Cenfan, SONG Yujuan. Synergistic reduction of NO x and CO2 emissions by coupling pulverized coal with biomass gas [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5501-5508. |
[5] | YANG Xueping. Exploration on technical path of modern coal chemical industry under the background of carbon neutralization [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3402-3412. |
[6] | WANG Jijie, HAN Zhe, CHEN Siyu, TANG Chizhou, SHA Feng, TANG Shan, YAO Tingting, LI Can. Liquid sunshine methanol [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317. |
[7] | ZHANG Chun, WANG Xuerui, LIU Hua, GAO Xuechao, ZHANG Yuting, GU Xuehong. Progress of zeolite membranes for reduction of carbon emission in industrial processes [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1376-1390. |
[8] | XU Nanping, ZHAO Jing, LIU Gongping. Thinking of membrane technology development towards “carbon emission peak” and “carbon neutrality” targets [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1091-1096. |
[9] | HE Shengbao, HUANG Gesheng. The new chemical materials industry and its role in low carbon development [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1634-1644. |
[10] | CHEN Jian, JI Cunmin, BU Lingbing. Research and application of hydrogen production technology from industrial by-product gas under the background of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1479-1486. |
[11] | TIAN Yuanyu, QIAO Yingyun, ZHANG Yongning. Construction of green emission reduction system under the constraint of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1078-1084. |
[12] | YAN Guochun, WEN Liang, ZHANG Hua. Analysis of development path of modern coal chemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6201-6212. |
[13] | ZHOU Ying, LI Yeqing, ZHOU Hongjun, XU Chunming. Exploration of bio-energy in promoting rural revitalization in China [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6195-6199. |
[14] | WANG Jikun, LI Yang, CHEN Guifeng, LIU Min, KOU Lihong, WANG Qi, HE Yicong. Catalytic oxidation mechanism of organics degradation by ozone in high-salt wastewater of coal chemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 493-502. |
[15] | Wenjun XIE,Xiaosen LI,Yingnan ZOU,Chungang XU. Characteristics of carbon dioxide hydrate formation and decomposition with the system of cyclopentane [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 129-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |